
3D unsteady computations of evaporative instabilities in a sessile drop
of ethanol on a heated substrate

Sergey Semenov,1,2 Florian Carle,1,3 Marc Medale,1 and David Brutin1,4,a)

1Aix-Marseille University, IUSTI UMR 7343 CNRS, 13453 Marseille, France
2Aix-Marseille University, MADIREL UMR 7246 CNRS, 13013 Marseille, France
3Yale Quantum Institute, Yale University, New Haven, Connecticut 06511, USA
4Institut Universitaire de France, 75231 Paris, France

(Received 27 September 2017; accepted 20 November 2017; published online 11 December 2017)

Droplets are ubiquitous and have been studied for a century; however, their internal flow pattern and

related instabilities that occur in the course of evaporation are not fully understood yet. In this paper,

we report our investigation results on an ethanol drop evaporating onto a heated substrate under

weightlessness conditions and with a pinned contact line. They have been obtained from both

experiments and 3D unsteady computations in order to determine what kind of instabilities develop.

Our one-sided model demonstrates quantitative agreement with experiments and confirms that

experimentally observed instabilities are driven by thermo-capillary stress and not by the gas con-

vection. Post-processed infrared images drawn from computations led us to conclude that the experi-

mentally observed thermo-convective instabilities, which look very similar to hydrothermal waves

in the infrared spectrum, are actually nothing else than unsteady Benard-Marangoni instabilities.

Published by AIP Publishing. https://doi.org/10.1063/1.5006707

Evaporating sessile drops of various liquids are widely

encountered in nature and have plenty of industrial and bio-

medical applications: heat exchangers,1 nanoparticle deposi-

tion (coffee-ring effect),2 spraying of herbicides and

pesticides on hydrophobic leaves,3 inkjet printing,4,5 and

blood analysis.6–8 As a result, evaporating sessile drops consti-

tute an interest for both academic and industry communities.

This problem is rich with numerous physical phenomena: dif-

fusive and convective vapour transport, kinetics of vapour

molecule transfer across the liquid-gas interface (Hertz-

Knudsen-Langmuir equation), evaporative interface cooling,

radiative heat transfer, Marangoni flows and instabilities, par-

ticle sedimentation and deposition, adsorption of chemicals on

interfaces, adsorbed precursor films, contact line instabilities,

and pinning/depinning processes. Many of these phenomena

can be visualized with the aid of modern optical instruments.

For example, the field of vapour concentration around the

droplet can be observed with the aid of digital holographic

interferometry.9 Observations of the infrared (IR) spectrum

give visual information about thermal processes in a drop-

let10–15 and allow estimating of the temperature field on its

surface.15–18 Among all observable phenomena, a particular

interest has been given to one particular type of spontaneously

developing thermo-capillary instabilities, formerly reported as

hydrothermal waves (HTWs). Conventional HTWs are

observed in thin liquid layers whose surface is subject to a lat-

eral temperature gradient.19–23 In sessile droplets, however,

evaporation induces naturally such temperature gradients,

leading to fascinating thermo-convective instabilities, as

observed in the IR spectrum of volatile liquids (methanol, eth-

anol, and FC-72) on heated substrates by Sefiane et al.10 and

later by few other researchers.13–15,17

However, it is still not clear what is exactly observed in

sessile droplets: is it hydrothermal waves or unsteady

Benard-Marangoni (BM) instabilities or a combination of

both? In order to answer this question, it is necessary to

understand underlying hydrodynamics and heat transfer

since according to Smith and Davis19,20 [see also Ref. 24 and

p. 115 in Ref. 25], HTWs are distinguished from other

thermo-capillary instabilities by the following attributes:

they appear only as a secondary unsteady thermo-convective

instability in a basic shear flow (primary thermo-capillary

flow) directed along the longitudinal temperature gradient at

the liquid surface; the mechanism of HTWs propagation

does not require any deflection of the free surface of the liq-

uid layer.

The purpose of this communication is to unveil by

means of direct numerical simulations the proper sequence

of instabilities that enter into play and to determine the

underlying triggering mechanism. Indeed, it turns out that

the unsteady Benard-Marangoni instability is in fact the trig-

gering instability in the considered case; meanwhile, hydro-

thermal waves are the consequence of the former instability

to distribute over the interface the time evolving thermo-

convective cells. The presented computations fully repro-

duce experimentally observed patterns. Therefore, the

authors think that it is important to deliver to the scientific

community the idea that in sessile drop evaporation, the

observed instabilities should not systematically be associated

only with HTWs since they are not generally the triggering

mechanism. In the present work, we address this question

related to the nature of instabilities that develop during ses-

sile droplet evaporation of volatile liquids (HTWs or BM

instabilities?). A one-sided numerical model has been devel-

oped to compute 3D unsteady and coupled hydrodynamics

and heat transfers in a sessile drop of ethanol on a heated sub-

strate. We assume a pinned contact line and a spherical-cap
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shape of the liquid-gas interface. The computed temperature

field is used for post-processing of top-view IR images of a

semi-transparent droplet (in the IR spectrum), which enabled

us to validate our model against experimental IR images.

Our computations contribute to figure out the internal 3D

flow structure in the droplet and also to determine the driving

mechanism and energy sources of the observed thermo-

convective instability and thus clarify its nature. A Cartesian

system of coordinates (x, y, z) is used, with its origin being

located at the geometrical center of the droplet-substrate con-

tact area and the z-axis directed perpendicular to the liquid-

solid interface pointing upwards. Let x̂; ŷ and ẑ be the con-

stant unit vectors in directions of x, y, and z axes, respec-

tively. A semi-analytical formula has been previously

developed to model the mass flow rate J (in kg s�1) of

unsteady diffusion-limited evaporation for a non-isothermal

pinned sessile droplet while accounting for Stefan flow in

the gas.26 It reads

JStefanðL;Tav;hðtÞ; tÞ¼2pD�eff LFðhðtÞÞ

� 1þLFðhðtÞÞffiffiffiffiffiffiffiffiffiffiffiffi
pD�eff t

p
 !

q�gln
q�g�qv;1

q�g�q�v;sat

 !
;

(1)

where

D�eff ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffi
TavT1
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Tav
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þ
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3=2
ref

� �
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C
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C

TdC; (4)

q�g ¼ pgM�g=ðRTavÞ; (5)

FðhÞ ¼

0:6366 hþ 0:09591 h2 � 0:06144 h3ð Þ= sin h

for 0 � h < p=18;

0:00008957þ 0:6333 hþ 0:116 h2�0:08878 h3ð

þ 0:01033 h4
�
= sin h for p=18 � h � p;
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>>>>>:
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v;satMv

RT
exp �K�

R

1

T
� 1

Tref
sat

 !" #
; (7)

q�v;sat ¼ qv;sat Tavð Þ: (8)

L is the droplet radius, Tav and T1 are the corresponding

average temperature of the liquid-gas interface C [see Eq. (4)]

and the ambient one, respectively, t is the time, hðtÞ is the

time-dependent contact angle, FðhÞ is the function of the con-

tact angle, derived by Picknett and Bexon27 and equivalent to

the one derived later by Popov,28 the asterisk stands for a

dependence on Tav, D�eff is the effective diffusion coefficient

for vapour in ambient gas, pg is the ambient gas pressure,

ðDpgÞref ¼ 1:337 Pa m2 s�1 at Tref¼ 298 K for ethanol vapour

in air,29 q�g [see Eq. (5)] and M�g ¼ Mairð1� X�vÞ þMvX
�
v are

the corresponding density and molar mass of the gas at C,

where Mair and Mv are molar masses of the corresponding

air and vapour (0.046 kg/mol for ethanol) and X�v
¼ q�v;satRTav=ðMvpgÞ is the vapour molar fraction, qv;satðTÞ is

the local saturated vapour density at C [Clausius-Clapeyron

equation, see Eq. (7)], R is the universal gas constant, K�

¼ c1ð1� Tav=TcÞc2 is the latent heat of vaporization with

c1 ¼ 55789 J/mol, c2 ¼ 0:31245, and Tc¼ 514 K for ethanol,

pref
v;sat ¼ 13838 Pa at Tref

sat ¼ 308:15 K, and qv;1 is the vapour

density in the ambient gas far away from the droplet.

Equation (1) has been used in a two-parametric approxima-

tion, japprox, for a non-isothermal vapour flux distribution

along the droplet surface (see Ref. 26)

japprox ¼ j�i r; hð Þ 1þ BðT � TavÞ½ � þ DhrC � js; (9)

where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
and

js ¼ �DðTÞ$Cqv;sat Tð Þ þ qv;sat Tð Þus: (10)

B and Dh are two parameters, $ ¼ x̂ @
@ xþ ŷ @

@ yþ ẑ @
@ z is the

nabla-operator, $C ¼ ðI� nnÞ � $, where I is the identity

tensor and n is the unit normal vector at the liquid-gas inter-

face pointing into the gas phase, js is the tangential compo-

nent of the vapour flux [see Eq. (10)], DðTÞ ¼ AT3=2 is the

local diffusion coefficient, us ¼ ðI� nnÞ � u is the tangential

component of the velocity vector, qv;satðTÞ is the local satu-

rated vapour density, $C � js is a surficial divergence [see Eq.

(22)] of the surficial vector js, and finally, j�i ðr; hÞ is an iso-

thermal version of the vapour flux distribution along the

droplet surface:

j�i ðr; hÞ ¼ j�0v
�kð1� xÞ

for 0 � h � p=2 and 0 � r < L; (11)

where

j�0 ¼
JStefan L; Tav; hðtÞ; tð ÞGðhÞ

2pL2FðhÞ ; (12)

GðhÞ ¼ 0:008348 h4 � 0:1026 h3

þ0:001815 h2 þ 0:4491 hþ 0:6368; (13)

v ¼ 1� ðr=LÞ2; (14)

k ¼ ðp� 2hÞ=ð2p� 2hÞ; (15)

x ¼

H 3�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4þ 5 1� h=hHEð Þ2

q� �
;

0 � h � hHE

�Eþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

EE2 þ 1� k2
E

� �
H þ Eð Þ2

q
;

hHE < h � p=2

;

8>>>>>>>><
>>>>>>>>:

(16)

kE ¼ 2h� 2hHEð Þ= p� 2hHEð Þ; (17)

hHE ¼ 0:7864 H þ 0:9103; (18)

E ¼ �2:679 H þ 0:7265; (19)

H ¼ 0:26 1� v0:7
� �

: (20)

Defining the liquid-gas interface C : z ¼ f ðx; yÞ, we can

represent js as a function v of only two coordinates
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js x; y; zð Þ ¼ js x; y; f x; yð Þ
� � � v x; yð Þ: (21)

Then, provided that nz 6¼ 0, term $C � js in Eq. (9) can

be expressed as

$C � js ¼ a � vð Þ0xþb � vð Þ0y; (22)

where symbols ð�Þ0x and ð�Þ0y denote partial derivatives with

respect to x and y, and vectors a and b are given as follows:

a ¼ I� nnð Þ � x̂ ¼ ð1� n2
x ; �nxny; �nxnzÞ;

b ¼ I� nnð Þ � ŷ ¼ ð�nynx; 1� n2
y ; �nynzÞ; (23)

with nx ¼ �f 0xnz; ny ¼ �f 0ynz and nz ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þðf 0xÞ

2þðf 0yÞ
2

p being

the components of the normal vector n. Expression (22) has

been implemented in our numerical model along with Eq.

(9) as a boundary condition for the local normal vapour flux,

j, at the liquid-gas interface: j ¼ japprox. All input data

required for the computation of japprox, such as Tav, hðtÞ, and

js are provided from the computations at previous iteration.

Our one-sided model solves for Navier-Stokes, continuity,

and heat transfer equations in the droplet bulk

q
@ u

@ t

				
m

þ u� wð Þ � $½ �u
 !

¼ $ � r; (24)

$ � u ¼ 0; (25)

qcp
@ T

@ t

				
m

þ ðu� wÞ � $T

 !
¼ $ � ðk$TÞ; (26)

where u and T are the velocity and temperature fields,

respectively, w is the mesh velocity, subscript m means that

the time derivative is taken at a fixed mesh node (fixed mesh

coordinates), q, cp, and k are the density, specific heat capac-

ity at constant pressure, and thermal conductivity of the

droplet phase, respectively, r ¼ �pIþ p is the total stress

tensor, p is the hydrodynamic pressure, and p ¼ lð$uþ
ð$uÞTÞ is the viscous stress tensor. Radiative, conductive,

and convective heat transfer into gas phase is neglected. The

substrate is considered isothermal with constant temperature

Ts. Initial conditions: Tjt¼0 ¼ Ts; ujt¼0 ¼ 0; pjt¼0 ¼ pg þ 2c
sin h0=L, where c is the liquid-gas interfacial tension and h0

is the initial contact angle. Boundary conditions: Tjz¼0

¼ Ts; ujz¼0 ¼ 0. The liquid-gas interface C is considered as

a boundary, moving in the direction of normal vector n with

velocity uC. Provided that the local evaporation rate is

known [see Eq. (9)], one can define the boundary conditions

at C as follows:

�k$T � n ¼ jK�=Mv; (27)

q u � n� uCð Þ ¼ j; (28)

r � n ¼ �c $ � nð ÞCnþ dc
dT

$CT; (29)

where ðr � nÞC is the divergence of vector n at C, that is the

curvature of C, which is equal to 2 sin h=L. Expression for uC

is derived based on total evaporative mass flux J ¼
Ð
CjdC

and two assumptions: pinned contact line (L¼ const) and

spherical-cap shape of the droplet in the course of evaporation

uC ¼ �
J

pqL3

1þ cos hð Þ2

sin h
z: (30)

To model the sessile droplet evaporation process, the loca-

tion of the liquid-vapour interface is unknown to be determined.

Moreover, as it moves in time, the mesh on which is discretised

the governing equations must dynamically fit the moving

boundary. To this end, an Arbitrary Lagrangian-Eulerian

(ALE) formulation is used to solve the time dependent problem

on a computational domain that matches the moving interface.

Therefore, a mesh velocity (denoted w) appears in momentum

[Eq. (24)] and heat [Eq. (27)] transport equations. The mesh

deforms in such a way to follow the moving boundary of the

computational domain, and so, it approaches closer and closer

to the substrate due to the evaporation process. The droplet sur-

face velocity uGamma is given by Eq. (31).

In order to compare our numerical model with experimen-

tal data, we have selected one particular experiment from our

series of parabolic-flight experiments.17 The selected configura-

tion is a sessile droplet of ethanol with a pinned contact line

that evaporates in microgravity conditions from a thin heated

substrate with an actively imposed constant temperature Ts.

The input data related to the selected case are the following:

pg¼ 792 mbar, Ts¼ 307.05 K, T1 ¼ 297:55 K, L¼ 2.95 mm,

h0 ¼ 29:2	; qv;1 ¼ 0; q ¼ 772:24 kg/m3, l ¼ 1:095 mPa � s,

k¼ 0.14 W/(mK), cp¼ 2602.3 J/(kg K), c ¼ 20:62 mN/m, and
d c
d T ¼ �82 l N/(mK). Parameters B¼ 0.33 K�1 and Dh
¼ 0:019 mm in Eq. (9) were obtained by fitting the local evap-

oration rate (j), computed with our previously developed non-

isothermal two-sided axisymmetric numerical model,26 which

also uses the same input data.

The governing equations have been implemented using

the COMSOL Multiphysics
VR

software, discretized with the

finite element method (FEM) using second order shape func-

tions. An optimized mesh has been built on 16 547 tetrahe-

dral elements (resulting in 187 050 degrees of freedom) so

that computations ran for about 9 days on a cluster with 48

cores. Computations start with a uniform initial temperature

field (at substrate heating temperature) in the droplet and the

imposed heating temperature at the substrate surface. Due to

the latent heat of vaporization, the droplet cools down from

the liquid-gas interface; meanwhile, temperature near the

contact line remains higher due to heat conduction from the

substrate through a thin layer of ethanol. This creates a verti-

cal temperature gradient in the droplet bulk and a tangential

one along the droplet surface near the contact line. These

temperature gradients promote the development of thermo-

capillary Benard-Marangoni instability. After intense

unsteady phenomena finished (at about t¼ 5 s), one can

observe a dynamic multicellular thermo-convective pattern:

Fig. 1 (Multimedia view) shows the temperature (color) and

velocity (arrows) fields in the vertical median plane [(a)

(Multimedia view)] and at the droplet interface [(b)

(Multimedia view)] at about 85% of the total time of evapo-

ration (t¼ 15.4 s). The dynamics of this instability well

resembles the experimentally observed one. So, as the pre-

sent computations enable us to access the transient internal

fluid flow structure inside the evaporating droplet, let us now

detail how such 3D instabilities develop over time.
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In the first stage, an unsteady axisymmetric base flow

sets up in a torus roll adjacent to the contact line. It rotates

upwards along the interface as it is driven by thermo-

capillary forces and superimposes to Stefan flow in the drop-

let. In the second stage, this torus roll is destabilized and

brakes into several BM cells resulting in a fully 3D unsteady

pattern that populates the whole droplet. Then, in the third

stage, the BM cells move toward an outer ring close to the

contact line where thermo-capillary forces remain much

more intense than in the apex region of low thermal gra-

dients. The transient pattern that arises from this point results

from the fact that BM cells have an intrinsic wavelength that

is roughly twice the local liquid thickness30 [i.e., k 
 2 f(r)].

So, the number of BM cells which matches the circumfer-

ence is NðtÞ 
 pðL�f ðrÞÞ
f ðrÞ . However, as evaporation proceeds in

the pinned mode, the droplet thickness decreases and N(t)

increases, leading to a continuous azimuthal movement in

order to evenly distribute cells along the droplet perimeter.

This last dynamics has undoubtedly been erroneously

attributed to HTWs, but they are actually BM instabilities.

Indeed, the internal flow structure in the droplet reveals that

there is no base shear flow directed along the tangential ther-

mal gradient along the interface, basic condition to be satis-

fied for HTWs to appear according to Refs. 19,20,24, and 25.

Therefore, these experimentally observed thermo-convective

instabilities cannot be classified as HTWs but actually

unsteady Benard-Marangoni instabilities.

In order to get quantitative observable comparisons

between computations and experimental results, we post-

processed simplified IR images based on the computed tem-

perature field. Experimental IR was recorded from the droplet

top view with a camera “VarioCam
VR

hr head” in the mid-

wavelength IR range [MW: 7.5–14 lm; Fig. 2(c) (Multimedia

view)]. For the numerical IR post-processing, we took into

account the semi-transparency of liquid ethanol in the mid-

wavelength (MW) bandwidth: according to the spectropho-

tometer measurements by Brutin et al.,13 ethanol’s absorption

coefficient in the MW range is a¼ 1.85 mm�1. Using this

value, one can compute the intensity of IR radiation arriving

to the camera installed above the droplet, which then can be

converted into an equivalent blackbody temperature,

TIR;numðx; yÞ (subscript num stands for “numerical”). This

computation is done by summing the IR radiation coming

from the substrate surface (assumed to be a gray body) with

the integral of IR radiation sources distributed across the

thickness of a semi-transparent droplet

T4
IR;numðx; yÞ ¼ eT4

s e�af ðx;yÞ

þ
ðf ðx;yÞ

0

T4ðx; y; zÞa e�aðf ðx;yÞ�zÞ dz; (31)

where f(x, y) represents the local droplet thickness. The emis-

sivity of a bare substrate surface, e ¼ T4
IR; exp =T4

s; exp , is esti-

mated by correlating the experimental equivalent blackbody

temperature [TIR; exp ðx; yÞ from IR camera] with the corre-

sponding real temperature, Ts; exp , obtained through thermo-

couple measurements.

The quantitative agreement between computed IR [Fig.

2(b) (Multimedia view)] and experimental one [Fig. 2(c)

(Multimedia view)] confirms that our one-sided model has

been able to catch the main dynamics of the droplet evapo-

rating process, and it is able to faithfully reproduce it. In this

FIG. 1. Snapshot of flow motion inside

the droplet under evaporation from the

numerical simulation at t¼ 15.4 s. (a)

Thermal plume formation in the drop-

let vertical median plane. (b)

Interfacial temperature. (c) Liquid tem-

perature in a horizontal cut plane

(z ¼ h0=5). (d) Vertical velocity com-

ponent in a horizontal cut plane

(z ¼ h0=5). Multimedia view: https://

doi.org/10.1063/1.5006707.1

FIG. 2. Snapshot of computed and experimental infrared images of an evap-

orating ethanol droplet at t¼ 15.36 s. (a) Computed droplet surface tempera-

ture. (b) Computed droplet total radiative temperature. (c) Experimental

infrared image. Multimedia view: https://doi.org/10.1063/1.5006707.2
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paper, we have reported our 3D one-sided numerical model

of an evaporating sessile droplet of ethanol on a heated sub-

strate. The model does not use any fitting parameters and

demonstrates a good qualitative and quantitative comparison

with the experimental data. Based on the computed tempera-

ture and flow fields, we conclude that the experimentally

observed thermo-convective pattern in the droplet is an

unsteady Benard-Marangoni instability and is different from

hydrothermal waves.
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