Divided Media and Complex Fluids (Axe MDFC)

Français

Divided Media and Complex Fluids

 


Research

This axis focus on the flow, mechanics and optical characterization of divided media and complex fluids, from nanoparticles to suspensions and granular media, to biological and biomimetic systems. These materials, made up of a dispersed solid phase and an interstitial fluid, are ubiquitous in industry, natural phenomena and biology. We address their mechanical and flowing behavior using controlled experiments on model systems, often coupled with theoretical and/or numerical approaches.

The axe is organized around 4 main topics:

This theme studies light scattering properties in relation with the characterization of nano- and micro-particle systems (…)

This theme deals with the static and flow behaviors of dense  granular media and cohesive powders (…)

This theme deals with the flow of fluid/particles mixtures, such as dense suspensions, immersed granular flows (…)

This research topic at the cross-road of physics, engineering and biology addresses the biomechanics of plants (…)


Members

Responsible

Yoël FORTERRE

Permanent Staff

Special Guest

Élisabeth GUAZZELLI

PhD students

Simon HADJAJE, Alice BILLON, Davide DI GIUSTO (co-tutelle Université de Udine, voir aussi), Bruno ETCHEVERRY, Adrien GANS, Quentin GAUBERT, Cédric MONTET, Mariam OUATTARA, Valentin PAUME, Saif SHAIKH, Scott STREDNAK, Chong WEI

Post-doc

Ignacio ANDRADE-SILVA, Shivakumar ATHANI, Victor CHARPENTIER, Nicolas LEVERNIER, Coraline LLORENS, Sandip MANDAL, Marie POULAIN, Chico ROCHA, Jeongeun RYU, Franco TAPIA

Alumni


News

Insight into the Rheology of Cohesive Granular Media [paper in PNAS]

In this paper, we show using discrete numerical simulations that the cohesiveness during flow is not only controlled by the interparticle adhesion, but also by the stiffness and inelasticity of the grains. For the same adhesion, stiffer and less dissipative grains yield a less cohesive flow, i.e., higher “flowability.” This combined effect can be embedded in a single dimensionless number—a result that enriches our understanding of powder rheology.

Mandal et al PNAS – Published 2 April 2020


Velocity distributions, dispersion and stretching in three-dimensional porous media [paper in JFM]

Using index matching and particle tracking, we measure the three-dimensional velocity field in an isotropic porous medium composed of randomly packed solid spheres. Our results confirm the chaotic nature of advection within three-dimensional porous media and, by providing the laws of dispersion and stretching, opens the way to a complete description of mixing in porous media.

Souzy et al J. Fluid Mech. – Published 23 March 2020


The Darcytron: A pressure-imposed device to probe the frictional transition in shear-thickening suspensions [paper in J. Rheology]

In this paper, we present a new device called the Darcytron, allowing pressure-imposed rheological measurements on dense suspensions made of very small particles, like shear-thickening suspensions. Our results on a model shear-thickening suspensions of micrometric silica beads provide direct evidence of a transition between a frictionless and a frictional state as the particle pressure is increased, providing support to the recent frictional transition scenario for shear thickening.

Clavaud et al J. Rheology – Published 5 March 2020


Laser-light and Interactions with particles [conference LIP2020]

The next LIP conference will be held on August 22-28th, 2020 in the Institute of Physics, Warsaw, Poland. Main topics: interactions between laser beams and particles, encompassing the following fundamental topics : particle characterization methods, near-field, far-field and time-resolved scattering, plasmonics and other resonances, complex shaped particles and aggregates, multiple scattering and random media, mechanical effects of light, laser beams description (contributions acoustical and quantum beams are also welcomed) and application domains: two-and multiphase-flow characterization, aerosol science and atmospheric environment, plasma and soft matter physics, biomedical optical engineering, remote sensing…

Conveners: D. Jakubczyk, M. Kolwas, F. Onofri, G. Gouesbet

Website: www.lip-conference.org / Flyer (call for abstracts): pdf


Gas-assisted discharge flow of granular media from silos [paper in PRFluids]

We studied experimentally the discharge of a vertical silo filled by spherical glass beads and assisted by injection of air from the top at a constant flow rate, a situation which has practical interest for nuclear safety or air-assisted discharge of hoppers. Using a two-phase continuum model with a frictional rheology to describe particle-particle interactions, we reveal the role played by the air-pressure gradient at the orifice and proposed a simple analytical model to predicts the mass flow rate of a granular media discharged from a silo with injection of gas.

Zhou et al Phys. Rev. Fluids  – Published 18 December 2019


Avalanches of Brownian granular materials [paper in PRL]

Macroscopic granular materials and colloids are usually studied separatly by different communities. But what happens if the particles in a granular flow are so small that their thermal agitation becomes comparable to their weight? In this paper we combine microfluidic experiments and a simple model to study the avalanche behavior of such a ‘Brownian granular medium’. We show that thermal agitation can completely erase the flow threshold of conventional granular media, a first step to bridge the gap between the physics of granular matter and colloids.

Bérut et al Phys. Rev. Lett. – Published 12 December 2019


Rheology of immersed and dry frictional spheres [paper in PRFluids]

Pressure-imposed rheometry is used to examine the influence of surface roughness on the rheology of immersed and dry frictional spheres in the dense regime. The quasistatic value of the effective friction coefficient is not significantly affected by particle roughness while the critical volume fraction at jamming decreases with increasing roughness. These values are found to be similar in immersed and dry conditions. Rescaling the volume fraction by the maximum volume fraction leads to collapses of rheological data on master curves.

Tapia et al Phys. Rev. Fluids  – Published 17 October 2019


Interparticle friction determines hysteresis in granular flow [paper in PRX]

Hysteresis is a major feature of the solid-liquid transition in granular materials but its origin is still debated. To study this phenomenon, we monitor the avalanche dynamics of non-Brownian suspensions in slowly rotating drums.  By using microsilica particles whose interparticle friction coefficient can be turned off, we show that microscopic friction, conversely to inertia, is key to triggering hysteresis in granular suspensions.

Perrin et al Phys. Rev. X  – Published 16 August 2019; see Focus story in Physics APS, news in Physics Today


Memory effects and transient gravitropic response in plants [paper in J Exp Bot]

In this paper, we study the plant gravitropic response to transient inclinations at the organ scale and the associated motion of statoliths at the cellular level. Our results reveal the existence of a memory process in the signalling pathway, independent of statolith dynamics. By combining this memory process with statolith motion, we build a mathematical model that unifies the different laws found in the literature and that predicts the early bending response of shoots to arbitrary gravi-stimulations.

Chauvet et al  J Exp Bot 70,1955–1967 (2019) – Published 27 March 2019


Breakup of a particulate suspension jet [paper in PRFluids]

As viscosity is increased, a liquid capillary jet accelerated by gravity stretches over increasingly large distances before eventually breaking up. This Newtonian behavior is profoundly altered for particulate suspensions. Adding solid particles to a liquid, which increases the effective viscosity, can paradoxically shorten the jet considerably. This apparent contradiction is rationalized by considering finite-size effects occurring at the scale of a few particles. A model is presented which captures the breakup length of suspension jets for a broad range of conditions.

Château et al  Phys. Rev. Fluid 4, 012001(R) – Published 10 January 2019


All news here


Jobs

Interships, PhD and post-doc proposals are regularely proposed by the members of the team. Do not hesitated to contact us !


retour en haut