

Tutorials description

Advanced Autumn School in **Thermal Measurements &** Inverse Techniques

Id	Title	Authors	Abstract
MP	M ultispectral	T. Duvaut	This tutorial deals with the multispectral pyrometry for the temperature and/or emissivity estimation. This is a contactless
	P yrometry	(Univ. Reims),	technique where the radiative emission of the studied surface is recorded by an appropriate sensor. The wavelength
		N. Horny	bandwidth of the detector should be adapted to the temperature of the surface but also to other parameters, depending on
		(Univ. Reims),	applications. A spectral treatment of the signal offers the possibility to select one or more narrow ranges to estimate the
		C. Rodiet (EPF	temperature and/or the emissivity. This tutorial is divided in five parts. The first one presents briefly generalities about
		Montpellier),	pyrometry, including its possibilities, limitations and issues. The second part presents the bispectral pyrometry. The third
		T. Pierre (Univ.	part concerns the detailed presentation of a simple experimental apparatus dedicated to measurement on a constant
		Bretagne Sud)	temperature of surface (600 °C) with different emissivities, including also the pyrometer calibration. The fourth part
			concerns the optimisation of algorithms used to perform estimations of temperatures with bispectral measurements. Finally,
			the fifth and last part will present a synthesis of criteria and methods / approaches to minimize errors in temperature
			measurements obtained by monospectral, bispectral and multipsectral methods.
HP	Thermophysical	T. Pierre (Univ.	This tutorial presents the well-known hot-plane technique devoted to the thermal characterization of materials at room
	Characterization	Bretagne Sud),	temperature. The experiments are transient, the input data and the observable are, respectively, a calibrated heat density,
	by Hot Planes	P. Le Masson	which generate a thermal perturbation in the material, and a local temperature. Both data are recorded at the material
		(Univ.	front face. The principle of the technique is detailed and the corresponding theoretical models are presented with
		Bretagne Sud),	appropriate assumptions. The experimental part of this tutorial is presented in three parts: first, the calibration with a
		Y. Jannot	known material, then the tests and the parameters estimation with materials of different nature, and finally the discussion
		(Univ.	regarding the limitation of the method, for instance in the case of water saturated porous materials. The theoretical models
		Lorraine), A.	are developed using the quadrupole formalism, and the parameters estimation is performed according to both determinist
		Kusiak (Univ.	(Levenberg-Marquardt) and heuristic fashions (Bayesian inference).
		Bordeaux)	
TF	Advanced sensors	F. Lanzetta	This tutorial is about advanced temperature and heat flux measurement with thermocouples and thermoresistances and can
	for Temperature	(Univ. Franche	be seen as complementary information to lecture L2. Many various temperature sensors will be presented and also
	and heat Flux	Comté) , B.	microfabrication of very small thermocouples. Time constants, errors due to heat leakage through the connection wire of
	measurements	Garnier (Univ	the thermocouples will be illustrated with experiments. Some rules will be explained to implement thermocouples in
		Nantes),	metallic sample in order to realize accurate and sensitive 1D heat flux sensors. Thin film heat flux sensors will also be
			discussed.

Metti⁷

Sept. 29th/ Oct. 04th Porquerolles (France) 2019

Advanced Autumn School in Thermal Measurements & Inverse Techniques

10		1 11	
IR	InfraRed	L. Ibos (Univ.	This training session is devoted to the use of infrared thermography for building applications. This session will be divided into
	Thermography /	Paris Est	two parts. The first part will concern metrological aspects of infrared thermography and more precisely the determination of
	Material and	Créteil), J.	surface temperature, and its associated uncertainty, using an infrared camera. Uncertainty sources due to the technical
	building	Meulemans	characteristics of the camera (measurement noise, non-uniformity, thermal drift) and to the physical properties of opaque
		(Saint Gobain	surfaces (emissivity, roughness) will be considered. Surfaces of different emissivities will be characterized (spectral emissivity
		Recherche)	curves will be provided). A particular attention will be paid to the determination of the mean radiant temperature. The work
			proposed in this first part will be based on theoretical aspects presented in the L4 lecture ("Measurements without contact
			in heat transfer"). The second part of this training session will be devoted to the study of heat transfers in a building wall
			using infrared thermography. A reduced scale model of a building wall including thermal irregularities will be used. The work
			proposed will concern (i) the detection of thermal irregularities such as thermal bridges (or lack of insulation) and (ii) the
			estimation of the thermo-physical properties of multi-layered walls with an inversion procedure. Practical work will be done
			using several infrared cameras equipped with cooled detectors or micro-bolometers arrays.
PH	Periodic Heating	L. Perez (Univ.	Periodic heating methods for materials thermal characterization are commonly used when observable signal/noise ratio or
	methods for	Angers)	sample thermo stability are low. This workshop is intended to illustrate the ways of analysing the sample thermal behaviour
	materials thermal	0,	in order to estimate thermal properties. The experimental apparatus is based on cheap heating device and temperature
	characterisation		measurement system so as to make it adaptable for educational purpose. The thermal modelling is based on complex
			temperature approach (amplitude and phase lag of temperature evolution). The parameter estimation procedure is
			developed (sensitivity analysis, errors sources analysis with a particular attention on noise effects, optimal conception of
			experiment). Two estimation strategies (complex temperature space distribution or frequency evolution) are described,
			illustrated and compared. Additional information on derived methods usable on problems with increased geometrical
			complexity with both analytical and finite elements modelling is detailed.
	1	L	complexity with both analytical and mille clements modeling is detailed.

Metti⁷

Advanced Autumn School in Thermal Measurements & Inverse Techniques

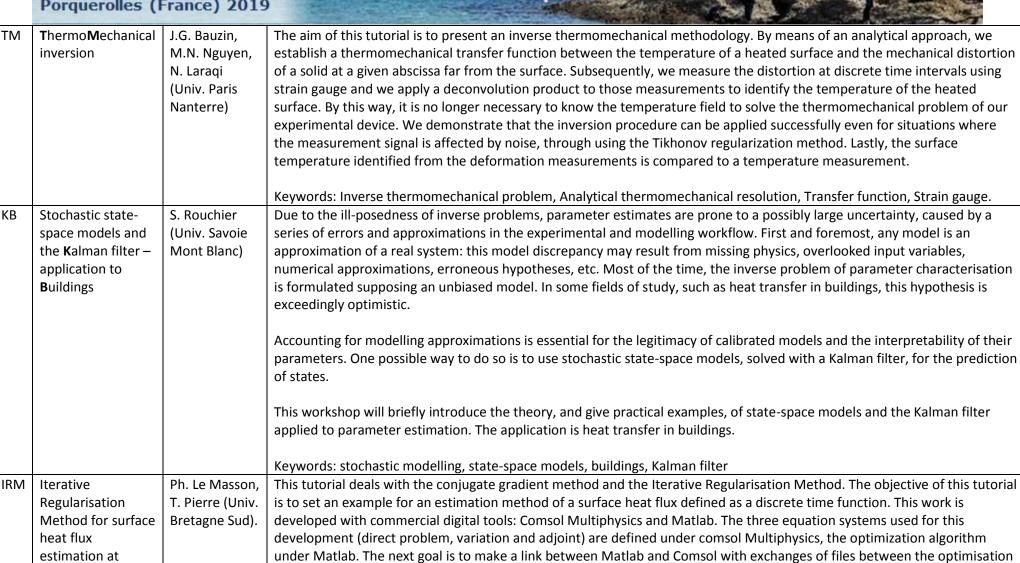
Sept. 29th/ Oct. 04th Porquerolles (France) 2019

MR	Model Reduction by modal analysis	Y. Rouizi, F. Joly (Univ. Evry)	 The aim of this tutorial is to show the interest of using modal reduction to solve inverse problems. The tutorial is structured in two parts. The first one concerns the construction of the modal reduced model from an already known detailed model (finite elements). Several modal bases will be tested (POD, Dirichlet-Steklov), as well as different reduction techniques (temporal truncation, amalgam). The second part deals with solving an inverse problem by using modal reduced models. During this work, we will show the influence of the order of the reduced model on the estimation results and on the calculation times. An example of an estimation of boundary conditions or thermo-physical parameter characterization will be treated.
			The different algorithms will be coded by participants using Octave software.
			https://www.gnu.org/software/octave/
TFB	Identification of Transfer Functions and of Boundary conditions	D. Maillet, B. Rémy (Univ. Lorraine)	The objective of this tutorial, composed of two 1h30 sessions, is to conceive a virtual sensor (a combination of physical sensors associated with a mathematical model which allows the estimation, by an inverse technique, of quantities associated to locations where no sensor is present). The tutorial is centered on experiments on a a hollow cast-iron cylinder, with 2 thermocouples embedded in the thickness of its wall, with stimulation by a foil electrical resistance over its inner (front) face. Either the transient temperature or the heat flux, at the front face are looked for. So, the instrumented wall itself becomes the « sensor ». Three inversion methodologies are presented in the tutorial. In its first part, if all the structural parameters of the instrumented wall are known, both quantities sought are estimated by a a regularized least square technique (Tikhonov of zero order), the exact model being analytically available in Laplace domain (method of Thermal Quadrupoles). If it is not the case, the second part of the tutorial requires, in a first step, the identification of the impulse response of each thermocouple (a transmittance or an impedance), which corresponds to a deconvolution problem in a calibration experiment. In a last part, the identification step of the second part is replaced by the estimation of the parameters of a model of ARX structure (AutoRegressive model with eXogenous inputs), for retrieving the above impulse responses in a more parsimonious way.
			Keywords : inverse heat conduction problem - virtual temperature sensor - deconvolution - thermal impedance - thermal transmittance

Advanced Autumn School in Sept. 29th/ Oct. 04th Porquerolles (France) 2019

HF	Heat Flux	J. L. Gardarein	Objectives : Use experimental measurements (a thermal experiment will be done during the tutorial). Estimate a heat flux
	identification	(Aix Marseille	with embedded measurement.
		Univ.), J.	
		Gaspar (Aix	This tutorial is especially designed to the beginners in inverse heat conduction techniques. In many industrial or research
		Marseille	applications, it is whether difficult or impossible to measure the temperature on the area of interest (fire safety, nuclear
		Univ.), J. L.	applications, solar devices). Therefore, temperature sensors may be quite far from the location where the temperature and
		Battaglia	the heat flux have to be known. As a consequence, specific inverse methods based on sensors data and an appropriate heat
		(Univ.	transfer model have to be implemented in order to estimate the seek variables (temperature, heat flux, heat transfer
		Bordeaux)	coefficient,). In this tutorial, we propose to detail the inverse procedures associating deconvolution and regularization
			method (Tikhonov) starting from a simple experimental setup. After a brief presentation of the experimental context, the first
			step will be the experimental identification of the transfer function. Then, the inversion procedure will be applied on an
			experimental signal produced during the tutorial. The numerical codes used will be accessible to the participants.
			Keywords : Heat Flux Estimation, Embedded temperature measurement, Regularization, Linear problem
BI	Bayesian approach	S. Demeyer	The tutorial will enable participants to apply Bayesian inversion algorithms to estimate thermal properties of walls (thermal
	for Inversion	(LNE, French	resistance, thermal conductivity, heat capacity of unit area) and their associated uncertainty from surface measurements of
		Standards	the wall. The Bayesian inversion relies on the setting of prior distributions on the parameters of interest that are combined
		Laboratory)	with the information gained from the measurements to provide the posterior distributions of the thermal parameters.
			Participants will experiment various prior settings and tuning parameter values as input parameters of a given Bayesian
			algorithm and see the effect on the convergence of the Bayesian algorithm and the posterior distributions. The required
			software is R with R Studio user interface.
			Kouwards: Pavasian inversion uncertainty quantification prior distribution posterior distribution thermal parameters of
			Key words: Bayesian inversion, uncertainty quantification, prior distribution, posterior distribution, thermal parameters of
			walls, R software
			Bayesian inversion, uncertainty quantification, prior distribution, posterior distribution, thermal parameters of walls, R software

Metti⁷


Sept. 29th/Oct. 04th Porquerolles (France) 2019

TM

KB

discrete times

Advanced Autumn School in **Thermal Measurements & Inverse Techniques**

agorithm and the equation systems. This approach saves development time and controls the estimated quantities.