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YOËL FORTERRE

Aix-Marseille University, CNRS, IUSTI, Marseille 13013, France
Email: yoel.forterre@univ-amu.fr

This chapter provides an overview of fluid and solid mechanical concepts
applied to plants. The objective is to present the main physical mechanisms
and laws needed to describe some important physiological processes in
plants, such as water and solute transport, growth, rapid movements and the
feedback between mechanical signals and biology. Emphasis is given on
presenting the various laws in their simplest mathematical form (avoiding
tensorial formulation as much as possible), discussing the scaling laws and
orders of magnitude relevant to plants. Many of the physical and biological
concepts introduced in the chapter will be studied in more detail in
subsequent chapters.

1.1 Fluids
Plants manipulate and move water to perform almost all their physiological
functions. Yet, there is no microscopic ‘‘water pump’’ in plants that would
‘‘actively’’ transport water molecules across cells, as there is for proteins or
ions. Therefore, whether minute transmembrane flows or large bulk trans-
port through trees, all water movement in plants occurs passively, according
to the well-known principles of thermodynamics and fluid mechanics.
In this section, we review those mechanisms and present the main physical
laws of water transport in plants. Readers interested in a more com-
prehensive presentation of both the biological and physical contexts
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may wish to consult recent reviews on the topic, such as Stroock et al.153

or Jensen et al.75

1.1.1 Water Potential and Turgor Pressure

1.1.1.1 Some Definitions

In plant science, it is common to characterize the thermodynamic status of
water using water potential C, defined as the chemical potential of water
relative to a reference state, per unit volume:35,85,110,112

C¼ mw � m0
w

vw
: (1:1)

Here mw is the chemical potential of water, i.e. the Gibbs free energy per
unit mole, m0

w is the chemical potential of water in the reference state,
chosen to be pure liquid at atmospheric pressure and at ambient
temperature, and nwE18 cm3 mol�1 is the molar volume of liquid water.
Using this definition, the water potential has the dimension of a pressure
(unit Pa or J m�3) and is null for pure water at 1 atmosphere. The water
potential depends on the thermodynamic state of water, i.e. its solid, liquid
or gaseous state, the presence of other molecular constituents interacting
with the water and the possible presence of an external field such as gravity
acting on the water. We provide below the main expressions of water
potential useful for plants.

� For a diluted aqueous solution under gravity, as found in the vessels of
the vascular system or in the large vacuoles of cells (Box 1.1), the water
potential may be decomposed as:

Cliq¼CpþCosþCg¼ P� cRTþ rgz. (1.2)

The first term Cp¼ P is the enthalpic or pressure contribution to the water
potentialy, where P is defined as the total pressure of the solution minus the
atmospheric pressure. When referring to the pressure inside plant cells, this
pressure difference is usually called the turgor pressure. The second term
Cos¼�cRT is the osmotic contribution corresponding to the free enthalpy
of mixing of the solute in water, as given by the van’t Hoff’s law. Here c is the
solute concentration (unit mol m�3), RC8.31 JK�1 mol�1 is the ideal gas
constant and T is the absolute temperature (unit Kelvin), such that
RTC2500 J mol�1 at ambient temperature. The opposite of the osmotic term
P¼�Cos¼ cRT, thereafter called the osmotic pressure, is often used
instead of Cos. Finally the last term Cg¼ rgz is the contribution of the
external gravity field, where rC103 kg m�3 is the water density, gC9.8 m s�2

is the intensity of gravity and z is the altitude above ground.

yThe compressibility of water is ignored in this expression; see Chapter 4.
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Box 1.1 Biological background.
Figure 1.1a shows a typical plant cell as described in a biology text-
book.155 It consists of a water pocket – the vacuole – which can represent
up to 95% of its volume, and the cytoplasm, which contains the cyto-
skeleton and the organelles necessary for the functioning of the cell, such
as the nucleus, the chloroplasts and the mitochondria. Plant cells have
various sizes depending on the organism, the type of cell and the stage of
development, ranging from a few microns for the stem cells of buds to
several centimeters for the giant cells of some aquatic algaeyyy. Like any
cell, the plant cell is surrounded by a semi-permeable plasma membrane,
whose pore size allows water molecules to pass freely but prevents the
passage of large solute molecules.

The main structural difference between animal cells and plant cells is
the existence, in the latter, of a stiff wall surrounding the plasma mem-
branezzz. This wall, whose thickness is of the order of 0.1 to 1 mm, allows
the plant cell to sustain a very high internal hydrostatic pressure of the
order of several bars, called turgor pressure (Section 1.1.1.2). The cell wall
of plants is made of cellulose microfibrils embedded in a matrix of
polysaccharides and proteins (Figure 1.1b). The cellulose microfibrils –
the stiffer element of the wall – are produced from a protein complex that
crosses the cell membrane and runs like a cargo along the cortical
microtubules located inside the cell (Figure 1.1b). As a result, the orien-
tation of the microfibrils deposited in the wall corresponds to the
orientation of the cortical microtubules. This may impart mechanical
anisotropy to the cell wall if the microtubule arrangement is anisotropic
(Section 1.2.2.1).

Water in plants is generally taken up at the root level in the soil and
transported throughout the plant body to the organs and leaves, where
most of the absorbed water evaporates (Section 1.1.4). In compact, non-
vascular tissue, such as in roots for radial transport or in the shoot growth
zone, water follows two main pathways (Figure 1.1c). The first pathway,
called the apoplast pathway, corresponds to transport in the cell wall
only, the apoplast being defined as the plant volume contained outside
the plasma membrane of cells. This pathway avoids the high hydraulic
resistance of the plasma membrane but has a very small volume: the
volume of the apoplast in non-vascular tissues is only 1–10% of the total
tissue volume. In addition, the apoplast pathway does not allow for os-
motic control of flow, because the cell wall is not very selective for solutes.
The second pathway is the cell-to-cell pathway and includes the symplast
and the transmembrane pathways. The symplast is defined as the volume
contained within the plasma membrane of cells, and is thus the dual of

yyyGreen algae and land plants belong to the Plantae kingdom, or ‘‘green plants’’, characterized
by the existence of chloroplasts containing green chlorophyll.

zzzOther examples of walled organisms are fungi, bacteria and archaea.
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the apoplast. It forms a continuous medium because the cytoplasms of
the cells are connected to each other by plasmodesmata, small nanoscale
pores whose permeability to water and solutes can be regulated68 (see
Chapter 2). The cell-to-cell pathway is under direct osmotic control by
the cells.

As well as these pathways, most land plants have evolved specialized
vascular tissues to carry water and other fluids over long distances. The
xylem, on the one hand, is the pipe network that transports the sap, made
of almost pure water, from the roots to the organs and leaves. It consists
of long interconnected conduits made of dead cells typically 10 to 500 mm
in width. Here transport is driven by a pressure gradient induced by
evaporation and capillary cohesion in the leaves, which pulls water under
negative pressures (Section 1.1.1.2 and Chapter 4). The phloem vascular
network, on the other hand, is adjacent to the xylem and distributes the
photosynthesis product created in the leaves (mainly sugar) to the rest of

Figure 1.1 Basics of plant anatomy. (a) The plant cell. (b) The primary cell wall
and the synthesis of the cellulose microfibrils, showing the cellulose
microfibrils (green), hemicellulose (pink), pectin (beige), the plasma
membrane (brown), the cellulose synthase complex (blue) and the
cortical microtubule (orange). (c) Water pathways in non-vascular
tissues. Drawings in (a) and (c) are inspired from the book.155
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� The water potential of a humid vapor, as found inside leaves where gas
exchange with the atmosphere takes place, is given by:

Cvap¼
RT
vw

ln½RH� ¼ RT
vw

ln
Pvap

PsatðTÞ

� �
; (1:3)

where [RH] ¼ Pvap/Psat(T) is the relative humidity of the atmosphere, Pvap

is the partial pressure of water in the vapor, Psat(T) is the saturation
pressure of water in airz under atmospheric pressure and ambient tem-
perature T (Psat¼ 2.3�103 Pa at 20 1C) and RT/vwE135 MPa at 300 Ky.

� Finally, water is also found inside the cell wall of plants, where it binds
with the cellulose network and other macromolecules such as hemi-
celluloses, pectins, and xyloglucans. The cell wall can be highly hy-
drated, as in the primary wall of growing cells, where about 75–80% of
the wall volume is water,155 or less hydrated, as in the lignified sec-
ondary wall of wood. The water potential of a gel-like medium akin to
the cell wall is called the matrix (or matric) potential and denoted Cm.
The matrix potential of the cell wall depends on its water content, pH,
temperature and the chemical affinity between the water molecules and
the polymer constituents of the wall, mainly.112 We provide in Box 1.4
an expression of the matrix potential for an ideal elastomeric hydrogel,
derived from the theory of polymer solutions.

1.1.1.2 Consequences of Water Balance

At equilibrium, the chemical potential of water, and thus the water potential,
must be uniform in all regions that can freely exchange water molecules.
This basic thermodynamic statement has key consequences for the mech-
anical status of water in plants, which we briefly discuss below.

the tissue for growth and storage. It consists of long living cells about
10 mm wide and 1 mm long separated by perforated sieve plates, forming
a continuous symplastic pathway. Transport through the phloem is dri-
ven by an osmotic mechanism as explained in Section 1.1.3.2.

zThe fact that the saturation pressure Psat(T) of water vapor in air appears in eqn (1.3), instead of
the saturation pressure of a pure water vapor, comes from the choice of the reference state for
the definition of the water potential (pure liquid under atmospheric pressure). In practice,
these two definitions of the saturation pressure differ by less than 0.1%, so they are usually not
distinguished (see the discussion in Chapter 4).
yThe water potential of the vapor should include an additional gravity term Cg¼rgz, having the
same expression as for a liquid phase. However, this contribution is usually negligible com-
pared to the humidity term (eqn (1.3)).
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First consider a plant cell containing solutes of concentration c immersed
in an external bath of pure water at ambient atmosphere (Cbath¼ 0)
(Figure 1.2a). We assume that the cell is surrounded by an ideal semi-
permeable membrane that allows water to pass freely through it but keeps
solutes inside. Using eqn (1.2), equality of the water potential between the
cell and the bath (Ccell¼Cbath) implies that there exists a positive pressure
difference, or turgor pressure, between the inside of the cell and the outside,
given by P¼P¼ cRT. At equilibrium, the turgor pressure is thus equal to the
osmotic pressure. For a solute concentration c¼ 0.2 mol L�1¼ 200 mol m�3,
the turgor pressure is P¼ 0.5 MPa. This is twice the pressure of a car tyre and
larger than the typical tension TmuscleB0.2 MPa produced by actin-myosin
molecular motors and muscle-like fibers.134 Such a large value of turgor

Figure 1.2 (a–c) Water potential balance and turgor pressure in plants. (a) Positive
turgor pressure driven by osmosis for an isolated plant cell immersed in
pure water (red arrows: tension in the cell wall). (b) Negative turgor
pressure driven by evaporation for an isolated cell in equilibrium with a
humid atmosphere (red arrows: compression in the cell wall). (c) The
water column in the xylem of a tree is under tension (negative pressure).
Mechanically, the column is held owing to a tiny capillary meniscus
located at the cell wall/air interface (close-up sketch). (d) Pressure-driven
flows: Poiseuille flow in a pipe (left) and Darcy flow in a porous medium
of permeability k (right).
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pressure is found routinely in hydrated plant cells, and can even reach up to
4 MPa – 40 bars! – in the stomata55 or in the shoot apical meristem of
Arabidopsis.93 These high positive values of the turgor pressure can be
achieved in plants because the cell is surrounded by a stiff cell wall
(see Box 1.1). As we shall see in this chapter and throughout the book, turgor
pressure plays a key role in plant biomechanics and physiology. It
determines the rigidity of non-woody plant tissues and drives irreversible
cell-wall deformation during growth. Change of turgor pressure driven by
osmotic or evaporation gradients is also responsible for many reversible
movements in plants.39,71

The second application we consider is an evaporating cell in contact
with a humid atmosphere at 1 bar (Figure 1.2b). If thermodynamic
equilibrium is reached, equality of the water potential between the cell and
the vapor (Ccell¼Catm) implies from eqn (1.2) and (1.3) a turgor pressure
inside the cell given by P¼ cRTþ (RT/vw)ln[RH]. For a 90% humidity, i.e.
[RH]¼ 0.9, and a solution concentration c¼ 0.2 mol L�1 as before, the
turgor pressure is P¼�14.5 MPa or �145 bars! In this situation, the turgor
pressure is therefore highly negative, which means that the liquid water
inside the cell is in tension and pulls on the cell wall. Large negative water
pressures due to evaporation are indeed observed in plant cells with very
rigid cell walls, such as in the woody cells of the xylem in trees. However,
liquid water in tension is in a metastable state. If a gas germ of sufficient
size nucleates or is already present inside the cell, cavitation may occur:
the microscopic gas germ suddenly expands into a macroscopic bubble.
The mechanism of bubble cavitation and its consequence for embolism
formation in trees is discussed in Chapter 4. Negative water pressure, and
more generally water tension in the cell wall of dead tissues, is also re-
sponsible for many passive movements in response to humidity
change,19,76 such as the opening and closing of pine cones,36 the bending
of wheat awns45 or the curling of seed pods.4,51 These hygroscopic move-
ments are discussed in Chapter 7.

In the aforementioned examples, the change of water pressure is induced
by osmotic or humidity gradients. We conclude by considering the more
common situation of a pure water column in static equilibrium under
gravity, as found in the vessels of a tall tree in the absence of flow
(Figure 1.2c). At equilibrium, the water potential of the sap Pþ rgz given by
eqn (1.2) must be uniform along the column. Assuming that the water
potential is zero, which corresponds to a well-watered soil, the water
pressure at the top of the tree is negative and given by P¼�rgHC�0.5 MPa
for a 50 meter-tall tree of height H. It is interesting to compute the size of
the capillary meniscus needed to support this negative pressure difference
mechanically. The Young–Laplace law states that the pressure difference
DPcap between water and air at a curved spherical interface is given by:

DPcap¼�
2g
r
; (1:4)
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where gB0.07 N m�1 is the surface tension of the water/air interface and r is
the radius of curvature of the meniscus, counted positive if the meniscus is
curved toward the air. For DPcapB �rgHB�0.5 MPa, the radius of curvature
of the meniscus is about 0.3 mm. This value is at least one order of magni-
tude smaller than the size of the smallest conductive vessels of the xylem
found in leaves. Therefore, air/liquid capillary suction in the xylem cannot be
the mechanism of sap ascent in trees. By contrast, the wall of plant cells is
a hydrogel with nanometer-size pores that are small enough to support a
very large mismatch of capillary pressure across the water/air interface
(Figure 1.2c, close-up). Therefore, the negative water pressure in the vascular
system of plants is mechanically balanced at the cell wall level, thanks to the
reduction of the matrix water potential: Cm¼�rgH. This equilibrium of
water under negative pressure holds only if there exists a continuous path of
liquid from the ground to the leaves in contact with the atmosphere, where
water eventually evaporates. The coupling between water in tension inside
the xylem, capillary suction by the cell wall and evaporation at the cell wall/
air interface is the basis of the cohesion-theory of sap ascent.38 The reader
interested in xylem flows can consult Tyree and Zimmermann’s book160 or
recent reviews such as ref. 75 and 153.

In the previous examples we have considered situations of thermodynamic
equilibrium, corresponding to a uniform water potential and no water flux.
Water transport requires the presence of water potential gradients, which
can arise from pressure gradients, solute concentration gradients, or
humidity gradients. We now discuss the laws relating these gradients to
water fluxes.

1.1.2 Pressure-driven Flows

1.1.2.1 Viscous Flows

Flows inside plants occur in tiny pipes. The largest conducting vessels in
trees are barely larger than 0.1 mm in diameter (with a range of diameters
from 10 mm to 500 mm160), while water pores inside the cell wall or the cell
membrane are nanometric in size. Hence, although the pressure difference
driving water transport in plants may be very large (BMPa range), the viscous
dissipation is huge, leading to small flow velocities. For example, the typical
velocity U of the sap inside the xylem of trees during the day is a few meters
per hour (B1 mm s�1) for a vessel diameter dB100 mm.160 The Reynolds
number of this flow, which compares inertial to viscous effects, is:

Re¼ rUd
Z

; (1:5)

where rC103 kg m�3 is the sap density and ZC10�3 Pa s is the sap viscosity,
giving a Reynolds number ReB0.1 smaller than 1. Similarly, change of vel-
ocity usually occurs on timescales T from minutes to a day, which are much

8 Chapter 1
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Box 1.2 Methods for measuring the turgor
pressure at cellular resolution.

Turgor pressure plays a central role in plant physiology and bio-
mechanics. The development of accurate methods to measure turgor has
thus always been a goal for plant scientists. Most methods give access,
not directly to the turgor pressure P, but to the water potential C or the
osmotic pressure P. If both quantities are known, then P is simply de-
duced from P¼CþP. The main methods for measuring C and P are
described, for example, in Taiz and Zeiger’s book.155 These include
(i) plasmolysis, by bathing the cells in osmotic solutions of varying con-
centrations and determining the onset for plasmolysis, i.e. the bath
concentration for which cell turgor drops to zero; (ii) the use of pressure
chambers, or pressure bombs, which pressurize tissues until water is
expelled, when the applied pressure is equal to the initial tissue water
potential; (iii) psychrometers or cryoscopic osmometers, which deduce
the osmotic pressure from its effect on the shift in some thermodynamic
properties. Besides being indirect, these methods only give access to the
global water status of the tissue, assuming the equilibrium of the water
potentials. By contrast, the two techniques described below can be used
to determine the turgor pressure at cellular resolution, without assuming
thermodynamic equilibrium.

The first method, known as the pressure probe, consists in introducing
a microcapillary directly inside the cell vacuole to record the pressure
(Figure 1.3a). The first detailed measurements were made in 1967 by
Green and Stanton on giant algal cells, using a capillary filled with air and
closed at one end.62 The size of these cells (diameter of about 2 mm for a
length of several centimeters) was large enough to neglect the loss of cell
sap upon insertion of the capillary and to obtain the turgor pressure
directly from the change of air volume in the capillary, using the ideal gas
law PV¼ nRT. For smaller cells, however, this technique cannot be used,
because the compressibility of the measuring system is too large com-
pared to the compressibility of the cell. To overcome this difficulty, the
cellular pressure probe was developed in the 1970s by Steudle and
Zimmermann150 (a detailed presentation of the method can be found in
ref. 149). The tip of the capillary is reduced to a few microns and the
capillary is filled with a liquid – silicone oil – and connected to a closed
oil-filled chamber containing a pressure transducer and a piston. When
the tip of the capillary is inserted into the cell, cell sap compresses the oil
inside the capillary, forming a sap/oil meniscus near the tip that is visible
under a microscope. At equilibrium, when the meniscus is maintained at
a fixed position with the piston, the pressure measured in the chamber is
equal to the turgor pressure inside the cell (the capillary pressure jump
across the meniscus is usually negligible).

The pressure probe not only provides access to the turgor pressure,
but also enables the measurement of the elastic and hydraulic properties of

Basic Soft Matter for Plants 9
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the cell. For this purpose, a rapid increase of the cell volume DV is applied
by means of the piston, after which the pressure relaxation is measured by
keeping the meniscus position fixed (Figure 1.3a). The initial relationship
between DV and DP gives access to the elastic bulk modulus of the cell:
Bcell¼ V(DP/DV), providing that the cell volume V is known (eqn (1.33) in
Section 2.2). The relaxation timescale of the pressure, on the other hand,
gives access to the cellular relaxation time tcell¼ V/[LpS(Bcellþ p)] discussed
in Section 2.3 (eqn (1.39)), enabling measurements of the plasma mem-
brane hydraulic permeability Lp. The cellular pressure probe has been used
to determine water relations in various plant cells and organs, including
negative pressure in the xylem.165 Recently, a somewhat simplified version
has been developed, the pico gauge,82 in which most of the volume of the
capillary is filled with a resin that solidifies under UV light, the oil volume
being reduced to the very tip of the capillary. As in Green’s pioneering ex-
periments, the pressure is deduced from the compression of the oil volume
upon insertion into the cell, obtained from image analysis.

The cell pressure probe is unique in giving a direct measure of the cell
turgor. However, this method is invasive and time-consuming and be-
comes increasingly difficult as the cell size decreases typically below 20 mm.
This has motivated the development of alternative indentation-based
methods in recent years.56,97,164 Lintilhac et al. in 2000 were the first to
use indentation to access the turgor of onion epidermal cells, using beads
in the range 50–500 mm in diameter (ball tonometry method91). The turgor
was simply derived from the indentation contact area A measured optically
and the indentation force F assuming F¼ PA. However, for smaller cells,
probes or indentation depths, the determination of the contact area may be
difficult. The influence of the wall tension and cell wall elasticity, ignored in
their analysis, can also be important.

Recently, the use of atomic force microscopy (AFM) techniques with
smaller probes (submicron in size) has made it possible to determine, from
a single indentation curve, both the elastic properties of the wall and the
cell turgor, providing that the cell topography is known11 (Figure 1.3b). The
Young’s modulus of the wall is first determined from the small
indentation-depth portion of the curve, for indentation d much smaller
than the cell wall thickness h, using the classical contact Hertz’s law:
F / Ewall

ffiffiffiffiffiffiffiffiffiffiffiffi
Rprobe

p
d3=2. Interpreting the larger depth portion of the curve re-

quires a model for the indentation of an inflated shell.161 Assuming the
radius of the probe to be much smaller than the cell size and indentation
not too large (dBh), a linear relationship is predicted between force and
indentation: F¼ kd. The apparent stiffness k is a function of the cell topo-
graphy (obtained with the AFM), the cell wall elasticity (determined previ-
ously) and the turgor pressure, from which P is obtained. When these
assumptions are not fulfilled, disentangling turgor pressure and wall
elasticity from the indentation curve is not obvious and mostly requires the
use of finite element method (FEM) simulations.93,135
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longer than the timescale of momentum diffusion across the diameter of the
pipe given by tBrd2/ZB0.01 s, such that the Stokes number, defined as:

St¼ t
T
¼ rd2

ZT
(1:6)

is much smaller than 1.
Therefore, inertial effects can usually be ignored when dealing with water

transport in plants. In this situation, the Navier–Stokes equation of fluid
mechanics reduces to the Stokes equation, balancing the pressure gradient
and the viscous stress:

�rPþ ZDUþ rg¼ 0 (1.7)

whereas mass conservation imposes that:

r.U¼ 0 (1.8)

where U is the local velocity field of the flow and g the gravity vector.

1.1.2.2 Hagen–Poiseuille’s Law

Integrating eqn (1.7) and (1.8) in the case of an infinitely long, vertical pipe
of circular cross-section of diameter d, like the conducting vessels of the

Figure 1.3 Measurements of the turgor pressure at cellular resolution. (a) Cellular
pressure probe. (b) Nanoindentation (figure redrawn and adapted from
ref. 93). Left: principle of the AFM technique. Center: small indentation
depths d give access to the cell wall elasticity. Right: large indentation
depths are sensitive to both the local cell geometry, cell wall elasticity
and turgor pressure.
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xylem (Figure 1.2d), gives Hagen–Poiseuille’s law, relating the flow rate Q
(unit m3 s�1) and the pressure gradients along the pipe:

Q¼ � pd4

128Z
rðP þ rgzÞ: (1:9)

One recognizes a linear relationship between the flow rate (the ‘‘flux’’) and
the gradient of water potential (the ‘‘force’’)z. The coefficient of pro-
portionality defines the conductivity K of the pipe (conductance per unit
length), which varies as the vessel diameter to the power 4. Hence, when the
vessel diameter decreases in an ideal branch by N identical pipes in parallel,
an increasing number of vessels N p d�4 is needed to achieve the same flow
rate under a given pressure gradient.

1.1.2.3 Darcy’s Law

The previous relationship can be generalized to pressure-driven flows in a
continuum porous material (Darcy’s law):

J¼ k
Z
rðP þ rgzÞ; (1:10)

where J is the flow rate per unit area (unit m s�1) and k (unit m2) is the hy-
draulic permeability of the porous material (Figure 1.2d). The hydraulic
permeability scales with the pore size d as k p d2 and may be anisotropic,
like in the xylem where flow in the longitudinal direction along the vessels is
much easier than in the transverse direction. Assuming an ideal tree branch
made of N identical pipes of diameter d in parallel, it is possible to explicitly
find the relationship between k and d. The flow rate per unit area is J¼NQ/S,
where Q is the flow rate across a single pipe and S is the area of the cross-
section of the branch. Using Hagen–Poiseuille’s law (eqn (1.9)) and identifying
with Darcy’s law gives an effective longitudinal permeability for the branch
kxylem¼ (d2/32)fxylem, where fxylem¼Np (d2/4)/S is the surface fraction of
xylem. Typical order of magnitudes for dB10–100 mm and fxylemB0.2 give
permeability values in the range kxylemB10�13–10�11 m2, similar to the
permeability of fine granular soils (silt). By contrast, the hydraulic permeability
of the cell wall is much lower, kwallC10�17 m2, which corresponds to water
pores in the cellulosic matrix of nanometric size dB3–4 nm.20,49 For such an
hydrogel made of microscopic pores, Darcy’s law can be generalized as
J¼� (k/Z)rCwall, with Cwall¼Cmþ rgz (see Box 1.4).

zNote that the gradient of solute does not appear in this expression. Indeed, the diffusion of
solute alone, without pressure gradient, is not associated with a global volume flux in the
absence of semi-permeable membranes. This is because the volume flux of solute in this case is
exactly compensated by an equal and opposite volume flux of water molecules, such that Q¼ 0
(this corresponds to a reflection coefficient sS¼ 0; see Section 1.1.3). This may not be the case if
the solute interacts with an external field in very narrow channels, as in diffusiophoresis and
electro-osmosis.
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1.1.3 Osmotic Flows and Solute Transport

Pressure-driven flows are very efficient in carrying water over long distances
and are the main mode of water transport in the apoplast of plants (xylem,
cell wall). Another important mode of transport in plants is osmosis, which
occurs when solute concentration gradients exist across the semi-permeable
membranes of living cells.

1.1.3.1 Water Transport Across Cell Membranes

The transport of water and solute across a semi-permeable membrane like the
plasma membrane of cells can be described using the framework of irrevers-
ible thermodynamics and the linear response between ‘‘forces’’ and ‘‘flux’’
(Onsager relations).35,47,77,148 In the presence of a pressure difference DP and
concentration difference Dc across the membrane, a volume flux (essentially
water) J (unit m s�1) and a molar flux of solute jS (unit mol m�2 s�1) cross the
membrane (Figure 1.4a), given by8:

J¼ LpDP� LpsSRTDc, (1.11)

jS¼ PSDcþ ð1� sSÞ�cJ þ j*
S: (1:12)

On the right-hand side of the water transport eqn (1.11), the first term rep-
resents the pressure-driven flow, where Lp is the hydraulic conductivity of the
membrane (unit m s�1 Pa�1), the second term is the osmotic flow driven by the
solute concentration difference, and sS is the reflection coefficient of the solute
(0rsSr1)**. Physically, osmosis arises because some of the momentum as-
sociated with solute thermal agitation is taken up by the cell membrane and
not by the water molecules, creating a net suction of water across the mem-
brane to the more solute-concentrated compartment (see Box 1.3 and ref. 84).

On the right-hand side of the solute transport eqn (1.12), the first term
corresponds to the passive diffusion of solute along the concentration gra-
dient (Fick’s law type), where PS (unit m s�1) is the membrane permeability
to solute. In plant membranes, both PS and sS are solute dependent and can
be regulated through the plasmodesmata permeability, in a complex feed-
back with turgor pressure.68 The second term corresponds to the coupling
between water transport and solute transport across the membrane, where c̄
is the mean concentration of solute across the membrane. Finally, the third
term j*

S corresponds to the molar flux of solute actively pumped against the
solute gradient using specialized channels and external chemical energy.
Values ranging from j*S¼ 10�7 to 10�6 mol m�2 s�1 are found for the

8These relationships hold for non-electrolytic solutions. In the case of ions, the electric potential
difference across the membrane must be added in the driving forces.

**Eqn (1.11) can be rewritten with the water potential explicitly shown as:
J¼ LpDCþ (1� sS)RTDc. The second term corresponds to the volume dragged by the solutes
when they cross a non-impermeable membrane (sS o 1). In the extreme case where sS¼ 0
(free diffusion), we recover the fact that only a pressure gradient can induce a net flow.
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potassium ion flux responsible for stomatal movement141 and in the motor
cells of Mimosa pudica.152 The highest solute conductance in plant mem-
branes is probably found in MscS-like (small conductance mechanosensitive
ion channel) stretch-activated channels.65

Figure 1.4 Osmotic and transmembrane flows. (a) Water and solute transport
across a semi-permeable membrane driven by a gradient of water
potential. Solute transport (red arrows) can be split into active transport
(straight arrow) and passive transport if the membrane is leaky (undu-
lating arrow: diffusion along gradients of concentration, curved arrow:
solute carried by water flow). (b) Close-up showing two modes of water
transport for an ideal semi-permeable membrane. Top: diffusive trans-
port driven by a water concentration gradient inside a low-water-
solubility membrane, such as the lipid bilayer of the plasma membrane.
Bottom: pressure-driven flow inside water pores, such as aquaporins.
(c) Stirring layer effects at the vicinity of a semi-permeable membrane.
(d) Osmotically driven transport of sugar and Münch’s mechanism.
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In many situations (salts, sugar, metabolites) the reflection coefficient of
the solute is close to unity and the membrane may be assumed perfectly
impermeable to the solutes (sS¼ 1, PS¼ 0). For such an ideal semipermeable
membrane, the water flux across the membrane is just given by the water
potential difference across the cell and the hydraulic conductivity of the
membrane Lp:

J¼ Lp(DP�RTDc)¼ LpDC. (1.13)

Typical values of the membrane conductivity in plant cells are
10�13oLpo10�11 m s�1 Pa�1 depending on the physiological state of the
cell.147 These values actually reflect two distinct modes of water transport at
the microscopic level (see Box 1.3 and Figure 1.4b). On the one hand, water
can cross the cell membrane by molecular diffusion inside the lipid bilayer,
which acts as a low-solubility medium for water. On the other hand, water
can flow in bulk through selective water channels of high conductivity in the
cell membrane, called aquaporins,96 whose shape is optimized for water
flow.59 The opening and closing of these channels is under tight physio-
logical control.

We conclude this brief survey by noting that the fluxes in eqn (1.11) and
(1.12) are set by the value of the concentration jump determined exactly at
the membrane. However, any osmotic flow – or solute diffusion if the
membrane is leaky – tends to pile up solutes on one side of the membrane
and sweep them away on the other side. The concentration difference across
the membrane is then smaller than the concentration difference imposed in
the bulk, which in turn reduces the osmotic flow. To minimize this effect,
some mixing is necessary to homogenize the concentration field and bring
the bulk concentration cb to a distance dSL as close as possible to the
membrane, called the ‘‘unstirred layer’’ thickness35,120 (Figure 1.4c). In plant
cells, such mixing can be achieved thanks to intracellular flows called
‘‘cytoplasmic streaming’’ that are actively driven by molecular motors (see
Chapter 2). If dSL is known, it is possible to estimate the real solute con-
centration at the membrane cm¼ c(x¼ 0) by balancing, in the unstrirred
layer, the diffusive flux and the advection flux: Ddc/dxBJc with the boundary
condition c(x¼ dSL)¼ cb, where D (unit m2 s�1) is the diffusion coefficient
for the solutes and J¼ LpRTcm is the osmotic flux (assuming an ideal
semi-permeable membrane and no pressure difference across the
membrane). We deduce a transcendental equation for cm:

cm¼ cb exp� JðcmÞdSL

D
; (1:14)

which can be used to estimate the reduction of osmotic flux causes by un-
stirring layer effects. In practice, for a typical osmotic flux JB1 mm s�1

(corresponding to an osmotic pressure PB1 MPa with LpB10�12 m s�1 Pa�1),
an unstirred layer dSLB10 mm (a value similar to the cell width) and a
coefficient of diffusion DB10�10 m2 s�1, we find that cmB0.9 cb, meaning
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that unstrirring layer effects on osmotic flows are likely to be small for
plant cells. This may, however, not be the case for solute transport if the
membrane is leaky.35

1.1.3.2 Osmotically Driven Transport of Sugar and Münch’s
Mechanism

Osmotic flows are the basis for the building of the positive turgor pressure in
plant cells discussed in Section 1.1.1. By adjusting their solute content, plant
cells pump in and out water to maintain cell hydration in dry conditions or
change their volume. One of the most important cell movements driven by
osmosis in plants is the closing and opening of the stomata, the cellular
valves that control the exchange of gas between the plant and the atmos-
phere at the surface of leaves.55

Another important example of osmotically driven flow in plants is the
long-distance transport of sugar (Figure 1.4d). Sugar is produced locally in
leaves from photosynthesis. To ensure its transport, sugar is first loaded
inside living pipe-like cells called the phloem, which are adjacent to the
water-filled xylem. This high concentration of sugar in the phloem decreases
its water potential and creates an osmotic flow coming from the xylem,
where the water potential is larger. This inward flow creates, in turn, a
positive turgor pressure at the top of the phloem and thus a pressure-driven
flow that transports sugar along the phloem toward the places where it is
unloaded and used for growth or storage. This mechanism was first pro-
posed by Münch in 1930.107 The velocity of the flow transporting sugar is
controlled by the Münch number:

Mu¼
64ZLpL2

d3 ; (1:15)

where Lp is the membrane permeability of the phloem tube, L the length of
the phloem and d its diameter. For Muc1, the viscous resistance of the
phloem tube dominates. The mean flow velocity is then given by the
Hagen–Poiseuille’s law (see eqn (1.9)): U¼Q/(pd2/4)Bd2/(32Z)cRT/L, where
c is the sugar concentration. By contrast for Mu{1 the dissipation from
the cell membrane dominates and the velocity U is imposed by the water
flux across the membrane J¼ LpcRT (see eqn (1.13)) and volume conser-
vation Upd2/4BpLdJ, giving UB(4L/d)LpcRT. The Münch number is just
the ratio of these two limiting case velocities. A typical value of the Münch
number for the phloem is MuB10�4{1 (taking L¼ 1 cm, the typical
length of a leaf stem, dB20 mm, ZB2�10�3 Pa s, LpB10�13 m s�1 Pa�1 and
cRTB1 MPa75), which gives a phloem’s velocity UB0.2 mm s�1 consistent
with observation.
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The transport of sugar along the phloem is governed by an advection-
diffusion equation:

@c
@t
þ Urc¼DDc; (1:16)

where D [unit m2 s�1] is the diffusion coefficient of sugar molecules in water
(here no sink or source of sugar are considered along the path). The ratio of
the advective to the diffusive term is quantified by the Péclet number:

Pe¼ UL
D
: (1:17)

Taking for the diffusion coefficient of sucrose in water D¼ 5�10�10 m2 s�1,
L¼ 1 cm (leaf stem) and U¼ 0.2 mm s�1 gives Pe¼ 4�103

c1. Therefore,
advection by the osmotic flow clearly dominates diffusion in the long-
distance sugar transport. In-depth discussion of this fascinating mode of
transport can be found in ref. 75.

1.1.4 Evaporation and Vapor Diffusion

We have seen that the water potential within plant tissues is generally
negative, with values ranging from 0 MPa for roots immersed in a well-
watered soil to few -MPa at the tops of trees or for plants living in arid or
saline environments. However, the water potential of the atmosphere is
much lower, with Cvap¼�70 MPa for a typical 60% humidity (see eqn (1.3)).
Water loss by evaporation is thus a critical issue faced by all terrestrial
plants, which they partly solve by covering most of their surfaces with a waxy
hydrophobic layer called cuticle (Figure 1.5a). However, some gas exchange
with the atmosphere must be maintained in order to capture the carbon
dioxine and other gases necessary for photosynthesis and plant metabolism.
This exchange occurs on the surface of leaves through specialized pores
called stomata. Still, a trade-off is required as many water molecules are lost
through evaporation when the stomata open (typically 100 kg of water are
lost for 1 kg of glucose synthesized in plants, see ref. 112), which is achieved
by fine regulation of stomatal function. A general review on leaf hydraulics,
from water movements through the leaf xylem to transport in the air space
between the leaf cells can be found in ref. 137. The complex interplay be-
tween biological signaling and stomata dynamics is discussed in ref. 88.
Here we focus on the basic physics of vapor diffusion in relation to plant
evaporation.

1.1.4.1 Fick’s Law

Evaporation at the liquid/air interface within leaves and diffusion of water
through the stomata represent the final mode of water transport in plants as
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Box 1.3 Osmosis and water transport across cell
membranes.

We have seen that water transport across an ideal semi-permeable
membrane is characterized by a single parameter, the hydraulic
permeability of the membrane Lp, which relates the bulk flux J to the
difference in water potential DC, regardless of whether it comes from a
hydrostatic DP or osmotic RTDc pressure gradient (eqn (1.13)). Micro-
scopically, however, Lp can describe two very different modes of water
transport, which we briefly discuss here (more details can be found in the
excellent book by Finkelstein47).

The first situation concerns a membrane of low solubility for water,
which typically corresponds to the lipid bilayers of the plasma membrane
(Figure 1.4b). In this ‘‘oil membrane’’ model, the concentration of water
molecules in the membrane is low, and water crosses the membrane from
one side to another mainly through diffusion, following a water con-
centration gradient inside the membrane. Fick’s law for the molar flux of
water inside the membrane reads jwater¼Doil

w (cþw � c�w )/‘, where Doil
w is the

diffusion coefficient of water molecules in the oily membrane, ‘ is the
membrane thickness and (cþw � c�w ) is the difference in water molar
concentration at both end of the membrane. This molar flux is associated
with a volume flux of water:

J¼ vw jwater¼Doil
w vw

cþw � c�w
‘

: (1:18)

It is possible to relate this concentration difference inside the membrane
to the external water potential difference DC, and thus to relate Lp and
Doil

w . Indeed, the continuity of the water potential at the interface of both
membranes implies that (see Figure 1.4b for notation):

Pþ � cþRT ¼� Dm0

vw
þ voil

vw
Pþ þRT

vw
lnðcþw voilÞ; ðleftÞ (1:19)

�Dm0

vw
þ voil

vw
Pþ þRT

vw
lnðc�w voilÞ¼ P� � c�RT : ðrightÞ (1:20)

Here, we have used the expression of the chemical potential of water
inside the oily membrane in the dilute limit, moil

w ¼ m0,oil
w þ voilPþRT ln cwvoil,

where noil is the molar volume of the membrane and Dm0¼ m0
w� m0,oil

w is
the difference between the chemical potential of pure water in the reference
state (atmospheric pressure at ambient temperature) and the chemical
potential of water in the membrane in the reference state and for a
water activity equal to one.47 Importantly, since there is a difference of
hydrostatic pressure across the membrane, an external ‘‘grid’’ (e.g. cell wall)
must exist on the right-hand side of the membrane in order to balance
the pressure difference. As a result, the hydrostatic pressure inside
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the whole membrane is uniform and equal to the left-hand side pressure
P1. Assuming that vwDC/RT{1, one may linearize the exponential and
obtain:

cþw � c�w ¼
vwc0

RT
ðPþ � cþRT � P� þ c�RTÞ¼ vwc0

RT
DC; (1:21)

where c0¼ (1/voil)exp[(Dmþ P1(vw� voil))/RT] is the molar concentration
of water in the membrane for a membrane in equilibrium with pure water
in the reference state. Introducing eqn (1.21) in (1.18) and identifying
with the transport eqn (1.13) gives the following expression for the hy-
draulic permeability in the case of lipid membranes:

Llipid bilayer
p ¼ Doil

w v2
wc0

RT‘
: (1:22)

Taking c0¼ 40 mol m�3, Doil
w ¼ 10�10 m2 s�1 and ‘¼ 3 nm (see ref. 47)

gives LpB10�13 m s�1 Pa�1, a correct order of magnitude for the per-
meability of lipid bilayer membranes.

The other situation corresponds to the existence of water pores inside
the membrane, such as aquaporin channels, which let water move freely
but exclude large solutes or ions. In this case, water transport does not
occur through diffusion but more like a pressure-driven bulk flow in a
pipe, although the molecular size of the pore may complicate the de-
scription.47,59 The gradient of hydrostatic pressure driving the flow inside
the pore can be estimated as before, by assuming the continuity of the
water potential on both sides of the pore. Since solutes are excluded from
the pore, the sharp drop of solute concentration on both sides of the pore
induces a sharp drop of hydrostatic pressure, such that Pþpore¼ P1� c1RT
and P�pore¼ P�� c�RT (Figure 1.4b). The gradient of hydrostatic pressure
in the water pore is thus (Pþpore� P�pore)‘¼DC/‘. We recover that, although
the flow in the pore is driven by a purely hydrostatic pressure gradient, its
value is given by the jump of water potential outside the pore, as expected
from the transport eqn (1.13). Assuming Hagen–Poiseuille’s law to hold
(eqn (1.9)) and a surface density of ns pores per unit surface, the total
water flux per unit membrane area is J¼ ns(pd4/128Z)(DC/‘). Identifying
this expression with the transport eqn (1.13) gives the following ex-
pression for the hydraulic permeability in the case of transports through
water pores:

Lwater pores
p ¼ nspd4

128Z‘
: (1:23)

Taking nS¼ 106 pores m�2, d¼ 0.2 nm, ‘¼ 3 nm and Z¼ 10�3 Pas gives
again LpB10�13 m s�1 Pa�1.
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it moves from the soil to the atmosphere. The diffusive flux of water mol-
ecule in a humid atmosphere jwater (number of moles crossing a unit area per
unit time, or mol m�2 s�1) is given by Fick’s law:

jwater¼�Dwrcw, (1.24)

where Dw¼ 2.4�10�5 m2 s�1 is the diffusion coefficient of the water molecule
in air at 20 1C and cw is the molar concentration of water in air (unit mol m�3).
Fick’s law can be equivalently expressed in term of the vapor pressure
gradient, using the gas state equation, Pvap¼ cwRT, or in term of the water
potential of the vapor using eqn (1.3):

jwater¼�
Dw

RT
rPvap¼�

DwvwPsatðTÞ
ðRTÞ2

exp
vw

RT
C

� �" #
rC: (1:25)

However, when expressed in term of the water potential, the coefficient of
proportionality between the water molecular flux and the gradient of water

potential is not constant but varies exponentially as: exp
vw

RT
C

� �
. Hence,

for a given gradient of water potential, a dry atmosphere (very negative C)
has a much lower ‘‘conductivity’’ than a humid one (CC0).

1.1.4.2 Evaporation from Stomata

As a first example of the application of Fick’s law, we consider evaporation
from a surface of pure water subjected to a side wind of velocity Uwind in
an atmosphere of relative humidity [RH]atm¼ Pvap/Psat(T) (Fig. 1.5b).
A diffusive boundary layer of size dB

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DwL=Uwind

p
developed above the

surface, where L is the typical surface size. The molecular flux of water is
thus given by:

jBL
water BDw

csat � catm

d
B

DwPsatðTÞ
RT

ð1� ½RH�atmÞ
ffiffiffiffiffiffiffiffiffiffiffi
Uwind

DwL

r
: (1:26)

Taking a wind velocity Uwind¼ 10 m s�1 and a lateral size L¼ 10 cm (leaf size)
gives a diffusive boundary layer of thickness dB0.5 mm. For a very dry
atmosphere ([RH]atmB0), this gives a molecular flux jwaterC10�2 mol m�3 s�1

and an evaporative mass flux Jm¼Mw jwaterC2�10�4 kg m�3 s�1, where
Mw¼ 18 g mol�1 is the molar mass of water. This value is surprisingly close to
the maximal evaporating rate reported per surface leaf area in plants.75 This is
all the more remarkable that stomatal pores covers only 1–10% of the leaf
surface, the rest being almost impermeable to evaporation.

To understand this feature, we consider an ideal leaf made of a flat im-
permeable sheet perforated with holes (stomata) of pore size a (Figure 1.5c).
The sheet is in contact with pure water at the bottom and placed in an at-
mosphere of water vapor concentration catm above. For an isolated stomata,

20 Chapter 1

D
ow

nl
oa

de
d 

on
 9

/2
0/

20
22

 8
:5

0:
51

 P
M

. 
Pu

bl
is

he
d 

on
 0

9 
Se

pt
em

be
r 

20
22

 o
n 

ht
tp

s:
//p

ub
s.

rs
c.

or
g 

| d
oi

:1
0.

10
39

/9
78

18
39

16
11

62
-0

00
01

View Online

https://doi.org/10.1039/9781839161162-00001


the size of the diffusive boundary layer is fixed by the pore size ayy. Assuming
that stomata do not interact with each other, the total evaporation rate of the
leaf per unit area is thus:

jstomata
water B nsa2Dw

csat � catm

a
B nsaDwðcsat � catmÞ: (1:27)

where ns is the number of stomata per unit leaf area. We find that the
evaporative flux from the leaf is equal to the evaporative flux from a surface
of pure water ( jstomata

water BjBL
water) when nsB1/(ad) or fsBa/d, where fsBnsa2 is

the surface fraction covered by the stomata. Taking dB1 mm and aB10 mm,
we find that this condition is fulfilled with stomata covering only 1% of the
leaf area (fs¼ 0.01). Indeed, due to their small size, stomata impose a dif-
fusion length scale much smaller than the air boundary layer, resulting in
high local evaporative gradients that compensate for their small area.

Eqn (1.27) predicts the paradoxical result that, for a sufficiently high
concentration of stomata, the evaporative flux from the leaf could be greater
than that from of a pure water surface. This is because we have assumed
that the external vapor concentration fixing the stomatal vapor flux is catm. This
assumption is valid only if the distance between stomata, sB 1=

ffiffiffiffiffi
ns
p

B a=
ffiffiffiffiffi
fs

p
,

is much larger than the air boundary layer d. In practice, however, s{d.
In this situation, the total resistance to evaporation from the leaf, defined
as RLeaf Evap¼ (csat� catm)/j, is the sum of the stomatal resistance
RstomataB1/(nsaDw)Ba/(fsDw) and the resistance of the air boundary layer
RBL¼ d/Dw (Figure 1.5d). We find that both resistances are equal when
fsBa/d, recovering the previous condition. A detailed discussion of the role of
stomata interaction on leaf vapor diffusion can be found in ref. 89.

1.1.4.3 Diffusive versus Bulk Transport: Plants as Water Valve

As a second application of Fick’s law, it is instructive to compare, for the same
difference in water potential, the mass of water transported in bulk by a pressure
gradient with that transported in vapor form by diffusion in a humidity gradient
(Figure 1.5e). According to Poiseuille’s law (eqn (1.9)), the mass bulk flow through
a pipe of diameter d and length L is Qbulk

m ¼ r(pd4/128Z)�(DC/L), where r is
the density of the liquid water, Z is the water viscosity and DC¼DP is the
pressure difference across the pipe. On the other hand, transport of water
vapor in the same pipe by diffusion from a vapor at saturation to an external
atmosphere of humidity [RH]atm gives, using Fick’s law, a diffusive mass flux:
Qdiffusion

m ¼Mw(pd2/4)(Dw/RT)Psat(T)[(1� [RH]atm)/DC]�(DC/L). Therefore, for
the same gradient of water potential, the ratio of the bulk to diffusive transport is:

Qbulk
m

Qdiffusion
m

¼ rRTd2DC
32ZMwDwPsatðTÞð1� ½RH�atmÞ

: (1:28)

yyThis is valid as long as a{dv where dnB
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nL =Uwind

p
is the viscous boundary layer and

nB10�5 m�2 s�1 is the air kinematic viscosity.
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Taking dB1 mm and a water potential difference for an atmosphere of
50% humidity gives: Qbulk

m /Qdiffusion
m B107! This shows that, even in very

small conduits, bulk transport driven by a pressure gradient in the liquid

Figure 1.5 Evaporation in plants. (a) Cross-section of a leaf showing the water transport
path from the xylem (liquid state) to the stomata (gas state). (b) Diffusive air
boundary layer above an evaporative bath of water subjected to a cross-wind.
(c) Evaporation from an isolated stomata modeled as a hole of size a in an
impermeable plate. (d) Pattern of vapor diffusion above a ‘‘leaf’’ made of
several ‘‘stomata’’. Thin solid lines give show the iso-concentration of vapor
while thick solid lines show the direction of the vapor flux. (e) Bulk flow in
the liquid state versus diffusive transport in the gas state for a given water
potential difference DP¼DCvap. (f) Asymmetric water transport (‘‘water
valve’’) at the trichomes of the plant Tillandsia aeranthos (photo) living in the
Atacama desert in Chile. Reproduced from ref. 128, https://doi.org/10.1038/
s41467-019-14236-5, under the terms of the CC BY 4.0 license https://
creativecommons.org/licenses/by/4.0/.
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state is much more efficient than vapor diffusion driven by a humidity
gradient.

This simple principle is harnessed by the plant Tillandsia, which lives in the
Atacama desert in Chile, to design an asymmetrical ‘‘water valve’’ on the surface
of its leaves128 (Figure 1.5f). The Atacama desert is probably the driest place on
Earth, with a humidity as low as 15%, which corresponds to a water potential
Catm¼� 250 MPa. However, a few days a year, fog from the coast brings a very
humid atmosphere full of tiny droplets of liquid water (CatmB0 MPa). These
droplets condense on the very hydrophilic surface of Tillandsia leaves and are
absorbed by the leaf cells through osmosis, due to their high concentration of
solute which creates a negative water potential Cleaf of about �1 MPa. Re-
markably, although the difference in water potential causing water absorption
during wet periods (DCabs¼ |Catm�Cleaf|¼þ 1 MPa) is a hundred times
smaller than the difference in water potential causing water evaporation during
dry periods (DCevap¼þ 249 MPa), the absorption flow rate is found to be a
hundred times greater.128 This corresponds to a difference in effective con-
ductance Q/DC between the humid and dry states a few thousands.

This strong asymmetry is explained by the existence of specialized structures
at the surface of Tillandsia’s leaves, called trichomes, where water exchanges
takes place.128 These trichomes consist of a row of empty dead cells covered by
a very thick cell wall, which separate the leaf cells from the atmosphere
(Figure 1.5f). During wet periods, the wall and dead cell cavities are completely
soaked with liquid water due to their hydrophilic nature; absorption then
occurs in the liquid state, through an osmotically driven bulk flow limited by
the leaf cell membrane permeability. By contrast, during the dry periods, the
liquid/vapor interface shifts within the trichome. Transport to the outside then
occurs by diffusion in the vapor form which, as we have seen, is very inefficient.

1.2 Solids
So far in the chapter, we have considered plants as rigid and static containers,
in which water and solutes are transported according to the laws of thermo-
dynamics and fluid mechanics. However, in order to absorb water, grow or
generate movement, the cells and tissues of plants must deform. This chapter
discusses the relationships between stress and deformation in the plant solid
body, and how this deformation is coupled with water transport. Other ex-
amples of fluid–structure interaction in plants are discussed in Chapter 2.

1.2.1 The Wall Stress and the Force Balance

1.2.1.1 Force Balance at the Cellular Level

The solid phase of plants is essentially made by the wall material that surrounds
all plant cells (Box 1.1 and Figure 1.1). Plant cells have two types of wall.155

Young growing cells and the mature cells of some tissues (leaf) are surrounded
by a thin primary cell wall made of stiff cross-linked cellulose microfibrils
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embedded in a highly hydrated matrix of polysaccharides (hemicelluloses and
pectins mainly),32,33,72 whose thickness h is typically between 0.1 mm and a few
mm. When growth stops, a thicker and more rigid secondary cell wall of lignin and
other woody components may be added, giving additional strength.

Under physiological conditions, the wall of living cells is stretched by the
internal, osmotically induced, turgor pressure (see Section 1.1). From a
mechanics perspective, a plant cell thus behaves like a pressurized thin shell
(Figure 1.6a). The tensile stress swall (force per unit area) stretching the wall
can be estimated by modeling the cell as a spherical shell of radius R and
uniform wall thickness h{R under a pressure difference P between the in-
side and outside. The balance of force on the half-shell imposes that the
external pressure force pR2P is equal and opposite to the tensile force in the
wall integrated along the wall perimeter 2pRhswall (Figure 1.6a), giving:

swall B
R

2h
P: (1:29)

This Young–Laplace-like relationship shows that the tensile stress in the wall
may be much larger than the turgor pressure due to the geometrical amplifi-
cation factor R/h. Taking a typical plant cell geometry R¼ 10 mm, h¼ 1 mm and
turgor pressure P¼ 0.5 MPa gives swall¼ 2.5 MPa, which is much larger than
the maximal tensile stress generated by animal muscle (TmuscleB0.2 MPa134).

Figure 1.6 Force and stress balance in plant tissues. (a) Force balance in a cell
viewed as a pressurized shell in order to compute the wall stress swall.
(b) Vertex model of a plant tissue (redrawn and adapted from ref. 26).
(c) Tissue-tension approximation: the epidermis, which is much stiffer
than the inner cells, carries most of the turgor-driven wall stress (red
arrows). The left-hand drawing is inspired by ref. 117. (d) Surface stress
distribution in the tissue-tension approximation, depending on the local
geometry of the organ.
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We will see that this stress level is enough to significantly deform the plant cell
wall and change its cell volume.

1.2.1.2 Force Balance in Plant Tissues

The balance of forces written here for an isolated cell can be generalized to a
tissue composed of several cells. In plants, each cell wall is glued to its neighbor
by an adhesive layer called the middle lamella, which prevents the cells from
sliding against each other or becoming detached (the situation of invasive
growth, discussed in detail in Chapter 7, is an exception). However, unlike the
case of an isolated cell, the balance of forces is generally not sufficient to
determine the stress distribution in all the walls of the tissue. Even when the
cell geometry and the turgor pressure are known, additional knowledge of the
constitutive relation of the cell wall is usually required (see Sections 1.2.2 and
1.2.4). In most situations, the complete computation of the tissue stress can
only be done by means of heavy and expensive numerical simulations, using
for example Finite Element Methods.15 Modeling plant solid mechanics at the
tissue and organ level thus often relies on simplified models.

The first class of model, broadly called cell-based models, considers the
discrete nature of cells with different degrees of approximation. Of these
methods the vertex model is one of the most popular.26,63,93 In its two-
dimensional version, the tissue is modeled as a collection of polygons rep-
resenting cells, in which linear segments representing the wall are in tension
and connected to vertices representing the wall junction (Figure 1.6b).
The global force balance implies that, at each vertex k, the (half) sum of the
pressure difference force at each face adjacent to k balances the sum of the
wall tension applied to k. A detailed presentation of vertex-like approaches is
given in Chapter 3.

The second class of model uses continuum mechanics to define an aver-
age stress tensor r which integrates both the wall stress and the turgor
pressure at the tissue level (see Chapter 3 for a detailed discussion of the
averaged stress tensor in plant tissue). In the absence of body forces, the
internal force balance is then given by:

r�r¼ 0. (1.30)

1.2.1.3 The Tissue–Tension Assumption: Plant Tissues as
Pressurized Shells

An approximation often used to describe stresses in plant tissues is based on
the fact that epidermal cells are generally much stiffer than the cells of the
underlying tissue, due to their small size and thick outer wall. The epidermal
layer is then assumed to support most of the turgor pressure generated by
the internal cells and the entire tissue is modeled as a pressurized
shell14,67,86 (Figure 1.6c). Using this tissue–tension assumption and neg-
lecting the bending stiffness of the epidermis, the force balance in the
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direction perpendicular to the epidermis reduces to a generalized Young–
Laplace equation:157

h
sk
Rk
þ s?

R?

 !
¼ P: (1:31)

Here (s8, s>) are the local principal in-plane stresses in the epidermis;
(R8, R>) are the local principal radius of curvature of the organ’s surface, and P
represents the turgor pressure of the cells in the bulk below the epidermis. This
equation must be complemented by the force balance in the plane of the shell
given by (@s8/@s8¼ 0) and @s>/@s>¼ 0, where (s8, s>) is the arc-length along the
principal directions. The pressurized-shell model has been widely used in the
context of plant morphogenesis to determine the tissue stress distribution in
organs of various shapes, such as the shoot apical meristem or in leaves63,69,138

(Figure 1.6d). For a spherical cap of radius R like the tip of a growing shoot
(R8¼R>¼R), the tissue stress is uniform and we recover the relationship (1.29):
s>¼ s8¼ PR/2h. For a cylinder of radius R like a stem or a root (R8¼N, R>¼R),
eqn (1.31) predicts that the perpendicular, hoop stress is twice the longitudinal
stress: s>¼ 2s8¼ PR/h. Finally, for a saddle crease geometry like at the cusp of a
bud (R>¼�ro0 and R8¼þRcr), one of the stresses is then compressive:
s>E�Pr/h while the other is in tension: s8Eþ PR/h (Figure 1.6d). Hence,
although the internal driving force – the turgor pressure – is isotropic, stress
anisotropy is more the rule than the exception in plants.

The tension of the epidermal tissue predicted by the pressurized shell
model is an example of residual stress, i.e. a non-zero internal stress in a
body at equilibrium and in the absence of external loading. Such residual
stresses are common in plants due to wall adhesion and the absence of
sliding between cells. In fact, any material inhomogeneity induced by gra-
dients of structure, elasticity, swelling rate or growth in a plant tissue is
susceptible to generate residual stresses, which may or may not be resolved
by tissue buckling or stress relaxation. The feedback between the tissue
shape, residual stress, and the biological response (growth law, mechano-
transduction) is central to plant morphogenesis and development.14

1.2.2 Elasticity

1.2.2.1 Hooke’s Law and Cell Wall Elasticity

As the plant wall is a living material, its mechanical description must be
approached with caution, especially for growing cells. However, as long as
the deformations are small enough (typically less than 5–10% in living cells),
and the timescales of observation not too large, the cell wall may be ap-
proximated as an elastic solid. The simplest elastic constitutive law is
Hooke’s law, in which deformations are reversible and proportional to the
applied stresses. For uniaxial deformation, Hooke’s law reduces to:

s¼ Eeel, (1.32)
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where eel¼DL/L is the elastic deformation or elastic strain and E (unit Pa) is
the Young’s modulus of the material (Figure 1.7a). The Young’s modulus is a
measure of the stiffness or compliance/softness of the material: the larger E
is the stiffer the material, while the lower E is the more compliant or
soft it is.

As a first application of Hooke’s law, we can calculate the reversible
volume change DV induced by a change in turgor pressure DP in a plant cell
modeled as a thin spherical shell of thickness h{R (Figure 1.7b). The force
balance implies swall¼ (R/2h)P (eqn (1.29)) and Hooke’s law can be written
approximately as followszz: swallEEwalleel¼ Ewall(R�R0)/R0, where Ewall is the
Young’s modulus of the wall and R0 the radius of the cell in its rest state
when the turgor pressure P¼ 0. Identifying these two expressions and
assuming small deformation (R�R0){R0 gives: DPE(2h/R)Ewall(DR/R)
E(2h/3R)Ewall(DV/V). The coefficient of proportionality of this pressure/
volume relationship is called the cellular bulk modulus Bcell (unit Pa):

Bcell¼ V
DP
DV
� 2h

3R
Ewall: (1:33)

The cellular bulk modulus determines the water storage capacity of the cells
and, as we shall see, controls the timescale of cell swelling. For xylem cells
under negative pressure, it also influences the dynamics of cavitation, as
discussed in Chapter 4. Importantly, the cellular bulk modulus is a measure of
the Young’s modulus Ewall of the cell wall, up to a geometric factor Bh/R.
Measurements of Bcell in a wide variety of cells has been made using the cell
pressure probe described in Box 1.2.30,80,151 A typical value for a growing plant
cell is BcellB5 MPa. Using eqn (1.33) for a plant cell of thickness hB1 mm and
radius RB10 mm gives EwallB75 MPa. This order of magnitude is consistent
with direct measurements of cell wall Young’s modulus using tensile assays,
which gives EwallB50–150 MPa for onion epidermal walls167 (Figure 1.7c).
The Young’s modulus of the wall is even larger in giant algal cells
(EwallB0.5–2 GPa125) and can exceed 25 GPa for wood fibers.57

Of course, the real mechanical behavior of the cell wall is more complex
than the ideal Hooke’s law considered here. First, the wall of living cells
typically exhibits a nonlinear strain-hardening behavior, i.e. an increase of
Young’s modulus with strain, together with a dissipative behavior (viscoe-
lasticity, plasticity),70,78,151,167 as found in other polymeric and gels materials
(Figure 1.7c). Second, the mechanical response of the cell wall is generally
anisotropic, with Young’s modulus being much larger in the direction parallel
to the mean orientation of the stiff cellulose microfibrils than in their per-
pendicular direction. Therefore, even for an isotropic loading such as that
imposed by the internal turgor pressure, the deformation of a cell is generally

zzFor this geometry and assuming an isotropic and homogeneous material, Hooke’s law in the
plane of the shell also involves Poisson’s ratio v of the material (�1rvr0.5). The exact ex-
pression of the cellular bulk modulus in this case is Bcell¼ [2h/(3(1� v)R)]Ewall; see ref. 87.
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non-isotropic. This anisotropy, combined with the microscopic heterogeneity
of the wall, makes the characterization of the wall by a single Young’s
modulus too simplistic. For example, wall stiffness deduced from indentation
methods using very small probes (sub-micrometer in size) are generally much
lower (of the order of few MPa98,166) than those obtained from tensile micro-
machines or inferred from the value of the cellular bulk modulus. This is
because indentation at nanoscales primarily probes the transverse elastic
properties of the wall and the polysaccharide matrix between the cellulose
nanofibrils, rather than in-plane global tensile properties.166

1.2.2.2 Elasticity of a Single Cell

The cellular bulk modulus (eqn (1.33)) characterizes the elastic response of a
plant cell to volume change, i.e. when the cell wall is forced to stretch further
during the deformation. It is interesting to study a situation of cell de-
formation without change of stretch, such as a single turgid cell squeezed
between two plates by a displacement d. When the internal turgor pressure P
is high and the cell wall thickness is thin (h{d), the problem is similar to
that of a squeezed elastic balloon (Figure 1.7d). The force then mainly
comes from the internal pressure acting against the plates: FBPpa2, where a
is the radius of the contact area between the cell and the plates. Assuming
that d is small compared to the radius of the cell R gives the geometrical
relation a2B2Rd and thus a linear relationship between the force and the
displacement: FB2pRPd. From this result, one can define an effective ex-
ternal stress acting on the cell s¼ F/(pR2), an effective elastic strain: eel¼ d/R
and thus an apparent Young’s modulus of the cell Ecell¼ s/eel given by:

EcellB2P. (1.34)

Interestingly, this apparent Young’s modulus depends on the turgor
pressure but not on the cell wall elasticity, a property that can be used to
infer the turgor pressure in experiments on single cells41,91 (see Box 1.2).
When the turgor pressure drops to zero, the apparent cell Young’s modulus
predicted by eqn (1.34) vanishes. In reality, there is always a small elastic
resistance coming from the bending of the cell wall, which we have ignored
previously. The force needed to bend a plate of size R and thickness h over a
displacement d is FBEwall(h

3/R2)d,87 yielding an apparent bending cell
modulus Ebending B[F/(R2)]/(d/R) given by:

Ebending B
h
R

� �3

Ewall: (1:35)

1.2.2.3 Elasticity of Plant Tissues

The previous analysis at the cellular level is helpful to understand the rela-
tionship between the macroscopic Young’s modulus of a multicellular turgid
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plant tissue and the microscopic properties of its constituents (Young’s
modulus of the cell wall, cell geometry). This link is, however, not
straightforward. Even for an idealized tissue composed of identical cells of
internal turgor P, wall thickness h and size R, dimensional analysis states
that the tissue Young’s modulus should depend on both the turgor pressure
and the cell properties through two independent dimensionless numbers,
namely P/Ewall and h/R. It is possible to simplify the prediction and derive
scaling relations when the turgor pressure is higher than the bending stiff-
ness (PcEbending) so that the cell walls are all pre-stretched and in tension.
As the liquid is incompressible, it is generally not possible to deform such a
tissue without further stretching the walls, unlike the case of an isolated cell

Figure 1.7 Elasticity. (a) Mechanical model of Hooke’s law. (b) Pressure–volume
relationship for a single cell in the elastic regime, characterized by the
cellular bulk modulus Bcell ¼V(DP/DV)E(h/R)Ewall. (c) Stress–strain rela-
tionship for onion epidermal walls during a loading and unloading cycle
in a tension assay. Adapted from ref. 167 with permission from AAAS,
Copyright r 2021 The Authors. Photo: Onion epidermal strip stretched
byB10% (image credit: Daniel Cosgrove). (d) Elasticity of a single plant
cell squeezed between two rigid plates, yielding an apparent cell Young’s
modulus EcellBP. (e) Elasticity of an ideal plant tissue. Under com-
pression, the cell wall is stretched and the turgor pressure changes,
yielding an effective tissue Young’s modulus EtissueBBcell.
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(Figure 1.7e). The tissue’s Young’s modulus Etissue is then dominated by the
stretching mode of deformation, as in the case of the cellular bulk modulus,
which gives:

Etissue BBcell B
h
R

� �
Ewall BfEwall; (1:36)

where fBh/R is the solid (wall) volume fraction of the tissue.
This scaling law is compatible with values of Young’s modulus of turgid tis-

sues EtissueB10 MPa and is valid as long as Ebending{P{Bcell. When the turgor
pressure drops to zero, for e.g. by plasmolyzing the cells in an osmotic solution,
the tissue modulus sharply drops because the cell walls are no longer stretched
and can bend easily. In real plant tissue, the situation is complicated by the fact
that the cell wall’s modulus Ewall itself is not constant but strongly varies with the
deformation (Figure 1.7c), yielding complex turgor pressure dependences. Note
that in all this discussion, we have assumed that the tissue remains always close
to full hydration, even when the turgor drops to zero. When the tissue further
loses water below the onset of plasmolysis, as during drying in air, the tissue
Young’s modulus Etissue may rise again because the solid fraction f increases,
until it reaches the wall Young’s modulus Ewall (see the discussion in Chapter 5
in the context of roots). More details on this question from the standpoint of
cellular materials can be found in ref. 57, 111 and 163.

1.2.3 Poroelasticity: From Cell to Tissue

So far, we have discussed the elastic behavior of a plant cell and tissue
without considering the flow of water within it. However, we have seen that
the cell wall and plasma membrane are permeable to water. Therefore, any
deformation resulting in a local change in turgor pressure, such as the
bending of a stem (Chapter 2) or the squeezing of a fruit, must induce a
movement of water within the medium. The same is true for a plant cell or
tissue immersed in a solution of different osmolarity. To restore the water
potential balance, the tissue must absorb or expel water and therefore
must swell or shrink elastically. This coupling between flow and deformation
in elastic porous media like plant tissues is described by poroelasticity or
poromechanics theory.34 As we shall see, poroelasticy sets the timescale of
response of plant tissues to sudden change of water potential, and thus
provides a bound for all water-driven movements.39,50,146

1.2.3.1 The Cellular Relaxation Time

We first consider poroelasticity at the cellular level. Consider an isolated
plant cell of initial volume Vi immersed in a bath at thermodynamic equi-
librium (Cbath¼Ccell,0¼ P0 – c0RT), where P0 is the initial turgor pressure of
the cell and c0 is its initial solute concentration (Figure 1.8a). The water
potential balance is suddenly perturbed at time t¼ 0, for example by
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suddenly changing the internal turgor pressure (a similar result holds for a
perturbation of solute concentration or external water potential). What is the
swelling/shrinking dynamics of the cell in response to this perturbation?

To answer this question, we use mass conservation and state that the
change in volume V of the cell per unit time is equal to the flow rate of water

Figure 1.8 Poroelasticity. (a) Cellular relaxation timescale tcell induced by a sudden
change of water potential (here a sudden drop of the cell wall Young’s
modulus). (b) Rapid swelling of the ring cells of the trap of the carnivorous
fungus Arthrobotrys brochopaga. Reproduced from ref. 114 with permission
from TIB, Copyright 1995. (c) Philip’s model of water transport in a
one-dimensional tissue (transmembrane transport only). (d) Molz and
Ikenberry’s model100 taking into account both the apoplast and transmem-
brane pathway. (e) Two-fluid continuum model for a poroelastic medium.
(f) Physical classification of plant movements showing the poroelastic
time tppL2 (blue line) and the inertial time tinertiaBL

ffiffiffiffiffiffiffiffiffiffi
r = E

p
(red curve),

below which no motion is possible.146
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through its surface S. Using eqn (1.13) of the water flux J across an ideal
semi-permeable membrane, this gives:

dV
dt
¼� J � S¼�LpðCcell �CbathÞS¼�LpðP � cRT �CbathÞS; (1:37)

where Lp is the hydraulic conductivity of the membrane. For small per-
turbations around the initial state, we can write: V¼ V0þ dV(t), S¼ S0þ dS(t),
P¼ P0þ dP(t) and c¼ c0þ dc(t). Since inertia is negligible, the mechanical
equilibrium is always satisfied and we can use the pressure/volume rela-
tionship dP¼Bcell(dV/V0) seen in Section 2.2 (eqn (1.33)). Finally, assuming
the conservation of solute during the dynamics implies: dc/c0¼� dV/V0.
At the lowest order, eqn (1.37) then reduces to a linear relaxation equation
for the turgor pressure:

ddP
dt
¼� 1

tcell
dP with tcell¼

V0

LpS0ðBcell þPÞ ; (1:38)

where tcell is the cell relaxation time and P¼ c0RT is the osmotic pressure.
Generally, BcellcP; writing V/SBR where R is the typical size of the cell
thus gives:

tcell B
R

LpBcell
: (1:39)

The cell relaxation time thus increases when the cell size increases or
when the membrane permeability or cell elasticity decreases. Typical
measurements in giant algal cells of R¼ 200 mm, Bcell¼ 30 MPa, and
Lp¼ 2�10�12 ms�1 Pa give tcell¼ 3.5 s.

The cell relaxation time sets the shortest response time of a plant cell to a
sudden (small) change of water potential: whatever the timescale of other
biochemical or genetic processes, e.g. ion flux, aquaporin opening, change
of wall mechanical properties, a cell cannot change its volume in a time
totcell. The cell relaxation time thus defines the fastest possible swelling/
shrinking movement at the cellular level.39,50 This hydraulic limit is
probably reached in some carnivorous fungi (e.g. Arthrobotrys brochopaga),
which have evolved special mycelial structures to capture nematodes115

(Figure 1.8b). In these organisms, the trap consists of a constrictive ring
composed of three connected cells of size RB5 mm. When a nematode
enters the ring, the cells rapidly inflate inward, wrapping the nematode in
less than 1/10 of second. The current hypothesis for this rapid movement is
that the cell wall of the ring is bi-composite, with a very rigid outer
wall surrounding a more flexible inner wall. Upon stimulation, the outer
wall suddenly breaks, which is equivalent to a sudden drop in the Young’s
modulus of the wall. To satisfy mechanical equilibrium and Hooke’s law,
[s ¼(R/2h)P¼ Eweel, see Section 2.2], the turgor must therefore drop
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abruptly, resulting in water being sucked in and the cell swelling very
rapidly due to its small size (tcell p R).

1.2.3.2 Water Diffusion in Plant Tissues

We can extend the previous approach to the tissue level. The simplest model
of a plant tissue is a one-dimensional chain of identical rectangular cells in
which water is transported from cell to cell through the cell plasma mem-
branes, without considering the cell wall between the cells (Philip’s
model,122 see Figure 1.8c). Using the water transport law (eqn (1.13)), the
mass conservation for the volume Vi of the cell i is given by (assuming
Cbath¼ 0):

dVi

dt
¼ AL0pðPiþ1 �Piþ1 � Pi þPiÞ � AL0pðPi �Pi � Pi�1 þPi�1Þ; (1:40)

where A is the cell area in the direction of the flow, L0p¼ Lp/2 is the effective
membrane hydraulic conductivity (the factor 1/2 comes from the fact that
two cell membranes has to be crossed per cell), Pi is the turgor pressure of
cell i and Pi¼ ciRT is the osmotic pressure of the cell i. Using again the
small perturbation approximation and the initial water potential equi-
librium condition, eqn (1.40) reduces to:

ddPi

dt
¼ 1

tcell
ðdPiþ1 þ dPi�1 � 2dPiÞ: (1:41)

where tcell¼ V0/[AL0p(BcellþP)] is the single cell relaxation time. Using the
continuum approximation : dPi(t)-dP(x,t), the set of discrete differential
eqn (1.41) becomes a single partial differential equation:

@dP
@t
¼ R2

tcell

� �
@2dP
@x2 ¼DPhilip

@2dP
@x2 ; (1:42)

with DPhilip¼R2/tcellBRLpBcell.
Eqn (1.42) corresponds to a diffusion equation for the relaxation of the

turgor pressure, with a diffusion coefficient DPhilip. The characteristic time
for water transport through a tissue of length L, called the poroelastic time tp,
is given by:

tp B
L2

DPhilip
B

L
R

� �2

tcell B
L2

RLpBcell
: (1:43)

The poroelastic time tp depends on the cellular hydraulic and mechanical
properties and scales with the tissue size as pL2.

The Philip’s model has been extended to take into account both the cell-to-
cell pathway and the apoplast pathway, i.e. through the cell wall (see Box 1.1)
by Molz and Ikenberry100 (Figure 1.8d). This model assumes that water can
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be transported from cell to cell by a gradient of cell water potential Ccell, and
into the wall by a gradient of hydrostatic pressure Pwall. Water can also be
exchanged perpendicularly between the wall and the cells. In this frame-
work, the water transport is described by two diffusion equations with a
coupling term:

@Ccell

@t
¼D1

@2Ccell

@x2 � C1ðCcell � PwallÞ
@Pwall

@t
¼D2

@2Pwall

@x2 þ C2ðCcell � PwallÞ
(1:44)

where D1¼DPhilip and D2¼ 2Bwallkwall/2Z is a water diffusion coefficient
in the cell wall, with Bwall the wall bulk modulus, kw the cell wall (Darcy)
permeability and Z the water viscosity. The coupling terms involve the
properties of the cell wall and cell membrane: C1¼ 6ALpðBcell þPÞ=V0 and
C2¼ 6LpBwall=fR, where f{1 is the wall volume fraction.

In practice, water diffuses much faster through the wall than from cell to
cell, because the wall is much more rigid than the cell (D2E100 D1). How-
ever, the small solid fraction of the wall and the large exchange surface
between wall and cells make the coupling between the two paths very strong.
In this situation, it can be shown that there is a local quasi-equilibrium
between the water potential of the wall and the water potential of the ad-
jacent cell, such that CcellEPwall¼Ctissue, where Ctissue is the water potential
of the tissue. The two coupled equations can then be reduced into a single
effective diffusion equation for water transport:

@Ctissue

@t
¼Dtissue

@2Ctissue

@x2 ; (1:45)

where Dtissue is an effective water diffusion coefficient given by:

Dtissue¼
D1C2 þD2C1

C1 þ C2
: (1:46)

Typical values for plant tissues (taking RB10/100 mm, LpB10�12 ms�1 Pa�1,
BcellB10 MPa, fB0.1, BwallB100 MPa, kwallB10�18 m2) gives Dtissue B
10�9–10�10 m2 s�1, in agreement with measurements.100,148 A three-
dimensional extension of this model, taking into account the transport in
vascularized tissues, can be found in ref. 130 and 131.

1.2.3.3 Poroelasticity in Continuum Media

When the effective medium approximation is valid, one can approach
water diffusion in plant tissues using continuum equations and the theory
of poroelasticy (see for e.g ref. 34). We derive here a simple one-
dimensional poroelastic model for a porous material made of an in-
compressible solid matrix of volume fraction f¼ dVS/dV, where dVS is the
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local volume of solid and dV the local total volume, infiltrated by an
incompressible liquid of volume fraction ff¼ dVf/dV ¼ 1�f, where dVf is
the local volume of fluid (Figure 1.8e). We note Us¼ð1=dVsÞ

Ð
dVs

dtU local
s

(resp. Uf ¼ð1=dVf Þ
Ð
dVf

dtU local
f ) the volume averaged velocity of the solid

matrix (resp. fluid). The conservation of mass written for the total medium
(solid and fluid) and for the solid phase gives two equations:

@

@x
fUs þ ð1� fÞUf
� �

¼ 0;

@f
@t
þ @fUs

@x
¼ 0:

(1:47)

Neglecting fluid and solid’s inertia, the conservation of momentum for the
total medium and for the fluid phase gives:

@

@x
ðss � PÞ¼ 0;

J � ð1� fÞðUf � UsÞ¼ �
kðfÞ
Z

@P
@x
:

(1:48)

Here, sS is the volume-averaged stress in the solid matrix corrected by a fluid
pressure term: ss¼ð1 = dVÞ

Ð
dVS

dtslocal
s þ fP, where P is the pressure in the

fluid phase (minus the atmospheric pressure by convention). This definition
of the solid stress, also called Terzaghi effective stress, ensures that the solid
stress is zero when the matrix is immersed in a fluid of uniform pressure
without deformation. The second equation for the fluid’s momentum
balance is Darcy’s law, where J is the volume flux of fluid, k is the Darcy
permeability of the porous medium and Z is the fluid’s viscosity.

The system is closed by adding a constitutive law for the mechanical
behavior of the solid phase. Assuming an elastic linear relationship between
stress and deformation (Hooke’s law), we can write:

ss¼ E
f0 � f
f0

� �
; (1:49)

where f0 is the solid fraction of the undeformed matrix, (f0�f)/f0 is the
one-dimensional elastic strain and E¼�f(dsS/df) is a one-dimensional
Young’s modulus of the solid matrix.

Linearizing eqn (1.47)–(1.49) around the rest state P¼ 0, US¼Uf ¼ 0 and
f¼f0 gives:

@f
@t
¼D @2f

@x2 with D¼ kE
Z
: (1:50)

One recovers a diffusion equation for the transport of water in the poro-
elastic medium, as obtained previously using a discrete description of the
plant tissue. The effective diffusion coefficient D is a function of the fluid’s
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viscosity Z, the Darcy permeability k and the elastic Young’s modulus E of the
porous matrix. The poroelastic time of water diffusion across a tissue of
size L is given by:

tp¼
L2

D ¼
ZL2

kE
: (1:51)

As for the cell relaxation time at the cell scale, the poroelastic time tp pro-
vides a bound for the fastest possible water-driven movements in plants at the
tissue and organ level.146 A plant motion occurring on a timescale t4tp can
rely on water transport, whereas systems with totp must use other
mechanisms (Figure 1.8f). The strong size dependence of the poroelastic time
(tp p L2) shows that hydraulic movements are increasingly less efficient in
terms of speed as the system size increases. We shall see in Section 2.5 how the
use of mechanical instabilities enables plants to overcome this hydraulic limit.

1.2.4 Growth

So far, we have dealt with the small deformation regime of plant tissues,
where strains are mainly reversible. We now address the opposite extreme
deformation regime corresponding to plant growth. Growth is the irrevers-
ible and sustained expansion of cells under physiological conditions.155 It is
obviously a very complex phenomenon that requires a continuous interplay
between biochemistry, mechanics and hydraulics to maintain homeostasis.
During growth, the cell wall must be continuously synthesized while it ex-
pands in order to maintain its mechanical and structural integrity. At the
same time, the absorption of water from the surrounding environment must
be precisely balanced, in order to allow the increase in cell volume and thus
the expansion.

The concept of growth usually encompasses cell division, cell differen-
tiation and the actual growth of cells, i.e. their increase in size. Cell division
occurs in localized regions called meristems. In plants, a distinction is made
between primary growth, responsible for the elongation of organs, and
secondary growth, responsible for the radial thickening of organs. Primary
growth is driven by meristems located at the tip (apex) of stems and roots,
and therefore called apical meristems. The meristem of secondary growth is
the cambium, a ring of cells around the axis of stems and roots. We focus
here mainly on primary growth and on the mechanical aspects of cell ex-
pansion, leaving aside the question of cell division and differentiation.
A discussion of growth from a modeling perspective is found in Chapter 4.

1.2.4.1 Cell Wall Rheology: The Lockhart–Ortega Model

The basic mechanics of plant growth have been revealed by seminal ex-
periments conducted on giant algal cells.60,125–127 First, growth requires the
existence of a minimum turgor pressure to occur, i.e. a minimum stretch or
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Box 1.4 Extension of poroelasticity to hygroscopic
media.

We have seen how the coupling between flow (Darcy’s law) and elastic
deformation (Hooke’s law) yields a diffusion equation for the transport of
water in a deformable porous medium. Similar fluid–solid couplings
occur in hygroscopic media like hydrogels, except that in the latter case
the strong chemical affinity between the water and the polymer chains
generates an additional osmotic driving force for the transport of water.
Hydrogels provide a simple model for the hygroscopic behavior of the
plant cell wall. We give below a one-dimensional version of the theory
developed by Bertrand et al. to describe the swelling dynamics of ideal
elastomeric gels.12

As in a classical poroelastic medium, the total stress in the gel can be
written as the sum of a solid stress sS and a fluid (pore) pressure P:

s¼ sS� P. (1.52)

For a gel the solid stress is of entropic origin and represents the elastic
stretching stress of the polymer chains network (as before, the isotropic
atmospheric pressure has been removed from the definition of P and s,
such that for a gel at atmospheric pressure: P¼ 0 and s ¼ 0). This elastic
contribution for uniaxial deformation can be written as:12

s1D
s ¼

RT
vp

1� f2

f

� �
; (1:53)

where f is the local volume fraction of solid and vp is the molar volume of
polymers in the dry state. Note that with this convention, the elastic stress
is null when the gel is dry (f ¼ 1, no water inside).

For an ideal elastomeric hydrogels, it is possible to decompose the
matrix potential (the water potential inside the gel) between a pressure
term and an osmotic term, by analogy with dilute solutions (see ref. 12):

Cgel¼ P þ Cos. (1.54)

The osmotic term is the derivative of the mixing Helmholtz free energy
of the gel per unit volume, with respect to change of volume. It can be
obtained from the Flory–Huggins theory of polymer solutions as:

Cos¼
RT
vw

fþ lnð1� fÞ � f
a
þ wf2

� �
; (1:55)

where vw is the molar volume of pure water in the reference state. The first
three terms in brackets reflect the entropy of mixing, where a is a measure
of the volume per polymer molecule relative to the volume per fluid
molecule in the mixture. The fourth term reflects the enthalpy of mixing,
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stress for the cell wall to yield. Second, above this yield pressure, the rate of
cell expansion, or growth rate, depends on the pressure difference between
the turgor pressure and the yield pressure. Third, when applying increments
of turgor pressure, the growth rate stabilizes at its steady value only after a
given relaxation time.

where w is a dimensionless interaction parameter.12 Once the water
potential is known, the generalized Darcy’s law is given by:

J � ð1� fÞðUf � UsÞ¼ �
kðfÞ
Z

@Cgel

@z
: (1:56)

By combining eqn (1.53)–(1.56) with the mass conservation (1.47), and
linearizing around a rest state, we recover a similar diffusion equation for
the evolution of f as derived previously (eqn (1.50)), except that the dif-
fusion coefficient now incorporates the osmotic contribution:

Dgel¼
kEgel

Z
with Egel¼� f

dðs1D
s þCosÞ

df
: (1:57)

We can apply this theory to estimate the swelling of a ‘‘water bead’’ ini-
tially in the dry state with a radius Rdry, and immersed in a bath of pure
water at atmospheric pressure where it reaches an equilibrium radius Req.
In this situation, swelling occurs in three dimensions, but the above one-
dimensional model can be applied to each direction independently, by
symmetry of the problem. At thermodynamic equilibrium, the water
potential of the gel is equal to that of the bath, such that:
Cgel(feq)¼ PþCos(feq)¼ 0. To be consistent with the one-dimensional
theory, feq must be understood as the linear solid fraction, not the
volume solid fraction, i.e. feq¼fdry�(Req/Rdry) with fdry¼ 1. On the other
hand, mechanical equilibrium implies that the total stress is null (the
bath is at atmospheric pressure), such that: s1D(feq)� P¼ 0. The linear
solid fraction of the water bead at equilibrium thus satisfies:

RT
vp

1� f2
eq

feq

 !
þRT

vw
feq þ lnð1� feqÞ �

feq

a
þ wf2

eq

� �
¼ 0: (1:58)

In practice, feq is small and vp/(avw)c1. At the lowest order, the swelling
ratio is thus given by:

Rfinal

Rdry
¼

fdry ¼ 1

feq
�

ffiffiffiffiffiffiffiffi
vp

avw

r
� 6; (1:59)

with typical values for hydrogels: aE250 and vw/(avp) E10�4 (see ref. 12).
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These observations are reminiscent of the behavior of yield-stress fluids in
soft matter, such as emulsions, polymeric gels or clays, which exhibit elastic
behavior below a yield-stress and viscous behavior above.6 From the mech-
anical standpoint, the simplest constitutive law of the plant cell wall is
therefore that of a Bingham fluid or an elasto-viscoplastic fluid. Such
Bingham model was first proposed by Lockhart in 196592 and then extended
by Ortega in 1985119 to take into account elasticity. For uniaxial deformation,
the Lockhart–Ortega rheology of the cell wall can be written as:

swall¼ Ewalleel and e¼ eel þ eir;

with
_eir¼ 0 if swall o sY;

_eir¼Fwallðswall � sYÞ if swall4sY:

(
(1:60)

In this model, the total strain in the cell wall e is decomposed into an elastic
part, eel, and an irreversible or plastic part, eir, which represents growth
(Figure 1.9a). Below a critical stress sY, the cell wall behaves as an elastic
solid (e¼ eel) and follows Hooke’s law with a Young’s modulus Ewall. Above
sY, the cell wall deforms irreversibly and flows with a strain rate _eir pro-
portional to the excess stress (swall� sY). The proportionality coefficient Fwall

between the strain rate and the excess stress is called the extensibility of the
cell wall and is associated with the irreversible creep of the wall under stress,
also called wall-loosening.166 Dimensionally, the cell wall extensibility is an
inverse viscosity [unit (Pa s)�1]. However, it should be kept in mind that the
extensibility reflects a complex process at the microscopic level, including
the addition of mass and a chemically mediated remodeling of wall material.
The extensibility strongly depends on the temperature – a sign that it is
under the control of cell metabolism127 – and can be modified under the
action of pH-dependent wall-loosening enzymes, such as expansins.25,32

Several molecular-scale2,42,132,167 or thermodynamic7 models have been
proposed to describe this active process, some of which recovering a
Bingham-like rheology at the macroscopic level (see Chapter 4 for a detailed
presentation of one of these microscopic models).

The simple uniaxial Lockhart–Ortega model (1.60) has been extended to
anisotropic cell wall under multiaxial stress, either by assuming an
anisotropic extensibility40 or an anisotropic elasticity by analogy with fiber-
reinforced composite materials.15,18 A more complex constitutive law
explicitly accounting for the reorientation of microfibrils under flow has
been also developed, by analogy with liquid crystals.43 For such tensorial
laws, the question of whether the cell wall yields above a critical strain eY or a
critical stress sY, which is equivalent in the one-dimensional Lockhart
model, is of importance, as the principal direction of strain may not coincide
with the principal direction of stress.117 For elongated cells and organs for
which s>4s8 (see Section 1.2.1), the direction of growth is mainly longi-
tudinal and thus perpendicular to the maximal stress, suggesting that the
yield condition in terms of strain is more relevant.
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Finally, a growing body of evidence suggests that the cell wall rheology is
regulated not only by molecular signals, but also by the mechanical state of
the wall itself.159 A key molecular actor of this feedback is the cortical
microtubules, whose orientation determines the orientation of the cellulose
microfibrils in the wall, and thus wall anisotropy (see Box 1.1. and
Figure 1.1b). Experiments show that the orientation of the microtubules
aligns with the direction of maximal stress in the wall, generating a feedback
loop between the organ’s shape (determining stress direction) and material
anisotropy (determining growth direction and thus shape)63 (Figure 1.9b).
This mechanical feedback is taken into account in the most recent rheo-
logical models118 but the precise transduction mechanism is still de-
bated.64,117 More generally, how mechanics modified growth, either through
direct effect on the wall stress or through the perception and transduction of
internal and external mechanical signals – a process known as thigmo-
morphogenesis – is a very active area of research in plant biophysics.
A discussion of these aspects in the context of root growth in given in
Chapter 5.

Figure 1.9 Growth and cell wall rheology. (a) One-dimensional mechanical repre-
sentation of the elasto-viscoplastic rheology of the cell wall. (b) Mechan-
osensing (red arrow) of the wall stress by the cortical microtubules
(brown) fixing the orientation of cellulose microfibrils (green) generates
a mechanical feedback loop between shape and growth. (c) Unidirec-
tional growth of a single cell immersed in a water bath (Lockhart’s
model).
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1.2.4.2 Growth of a Single Plant Cell

The Lockhart–Ortega rheology can be used to describe the unidirectional
and uniform steady growth of an isolated cell, modeled as a cylinder of fixed
radius R and length L(t), immersed in an external bath of water potential
Cbath (Figure 1.9c). This situation typically corresponds to the growth of the
giant internode cells of the green algae Chara or Nitella. For these cells, the
wall expansion is evenly distributed over the wall surface and growth is
uniform along the cell, a mode of growth called diffuse growthyy. Moreover,
the cellulose microfibrils in these cells run mainly circumferentially,
restricting growth in the radial direction and promoting growth in length.

In this cylindrical geometry, the balance between the turgor pressure and the
wall stress implies that the longitudinal wall stress is given by swall¼ PR/(2h),
where h is the wall thickness and P the turgor pressure. For a steady state of
growth the elastic strain eel is constant. The growth strain rate, also
termed relative elongation rate (RER) or relative elementary growth rate (REGR)
in the plant science community, is then given by _e¼ _eir¼ (1/L)(dL/dt). Combining
the force balance and the Lockhart–Ortega wall rheology (1.60) thus implies:

1
L

dL
dt
¼FðP � PYÞ; (1:61)

where F¼ (FwallR/2h) is an effective extensibility defined at the cellular level
and PY¼ 2hsY/R is the yield turgor pressure for growth. This first Lockhart’s
equation must be complemented by a second equation for water transport.
Indeed, for cell expansion to be possible, an inward flow of water must
compensate for the increase in volume, which requires a difference in water
potential between the inside and outside of the cell. Using the water trans-
port eqn (1.13), the second Lockhart equation is:

dL
dt
¼� 2L

R
LpðP � cRT �CbathÞ; (1:62)

where Lp is the hydraulic conductivity of the membrane and c the cell solute
concentration. To close the system, a third Lockhart equation should be
added to describe the temporal evolution of the solute concentration.105 We
assume here that growth is slow enough that osmotic balance is maintained,
so that solute concentration remains constant. The solution of (1.61–1.62) is
therefore:

1
L

dL
dt
¼

2Lp

R
cRT � PY

1þ
2Lp

RF

and P¼
PY þ

2Lp

RF
cRT

1þ
2Lp

RF

: (1:63)

yyDiffuse growth is opposed to tip growth, characterized by a highly localized wall expansion at
the tip of the cells. Tip growth is the mode of growth of invading cells like root hairs or pollen
tubes and is discussed in Chapter 7.
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Two limiting regimes can be considered depending on the value of the
Lockhart’s parameter: L¼ 2Lp/RF. For Lc1 (small extensibility, large
membrane permeability), eqn (1.63) becomes:

1
L

dL
dt
� FðcRT � PYÞ and P � cRT : (1:64)

This regime is called the extensibility-limited regime. In this case the growth
rate of the cell is set by how fast the cell can extend its cell wall (embedded in
the parameter F), not by its ability to take up water across the plasma
membrane. The water potential balance is then almost satisfied and the
turgor pressure is simply given by the osmotic pressure cRT. Growth of most
plant organs is assumed to operate in this extensibility-limited regime. From
typical growth rate in young shoots _eB0.1� 1 h�1 (see ref. 144) and using
standard values cRTB0.5 MPa, PYB0.3 MPa31 and R/2hB10, we find that
the cell wall ‘‘viscosity’’ is 1/FwallB10–100 GPas – a value close to the
viscosity of ice!54

For the opposite regime L{1 (large extensibility, small membrane per-
meability), the Lockhart eqn (1.63) becomes:

1
L

dL
dt
�

2Lp

R
ðcRT � PYÞ and P � PY: (1:65)

In this conductivity-limited regime, the extensibility of the cell is so large
that the growth rate is limited, not by the cell-wall extensibility, but by the
water uptake resistance set by the plasma membrane. The turgor pressure is
then poised at the yield pressure PY, not at the osmotic pressure cRT ,
meaning that a significant water potential gradient exists between the inside
and outside of the cell.

1.2.4.3 Extension of Lockhart’s Model to Tissues

Since the pioneering work of Molz and Boyer,99 the Lockhart equations have
been extended to multicellular tissues using cell-based models to couple
water transport and growth.26 A scaling analysis of the problem can also be
made using the same kind of continuum approach as we used for
poroelasticty (Section 2.3). Consider a tissue of size L growing at a constant
rate _e. Volume conservation requires a water flux to sustain growth, which is
given by: J¼ (1/S)dV/dt¼ _eL, where V is the volume of the growing tissue and
S the cross-section perpendicular to the flow. From Darcy’s law, this water
flux must be induced by a turgor pressure gradient across the tissue (as-
suming uniform solute concentration) given by: (DP/L)¼ (Z/k) JB(Z/k)_eL,
such that:

_eB
k
Z
DP
L2 : (1:66)
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This relationship is the tissue version of the second Lockhart equation
(1.62) on water transport. On the other hand, the force balance between
the internal turgor pressure and the cell wall still holds at the tissue level,
such that sB(R/h)P. Using the Lockhart–Ortega rheology for the wall in
steady state, we recover the same relationship as the first Lockhart’s
equation:

_eBF(P� PY). (1.67)

This analysis shows that the gradient of turgor pressure induced by tissue
growth is negligible if DP{P� PY, which using eqn (1.66) gives:

Ltissue¼
k

FZL2 c 1: (1:68)

The dimensionless number Ltissue is the tissue equivalent of the Lockhart
number L defined at the cellular level. For Ltissuec1, the tissue growth rate
is limited by cell-wall extensibility while for Ltissue{1, it is limited by water
conductivity. Interestingly, this ‘‘tissue Lockhart number’’ depends not only
on the mechanics and hydraulic properties of the tissue but also on the
system size, with a strong size dependence LtissuepL�2. It has long been
assumed that growth in plants operates in the extensibility-limited regime
and that growth-associated water potential gradients were small, with the
exception of fast-growing tissues such as coleoptiles or roots.16,17,30,31,99,148

However, recent measurements of turgor pressure at cellular resolution in
the shoot apical meristem of Arabidopsis revealed high cell-to-cell pressure
heterogeneity, which can only be predicted by taken into account water
transport in addition to wall mechanics.93 Water conductivity was also
shown to strongly influence the emergence of lateral roots in Arabidopsis.121

Therefore, the role of water conductivity in the control of growth and de-
velopment might be more important than previously anticipated, even at
small scales.

1.2.4.4 Differential Growth in Rod-like Organs: Plant Tropisms

In the previous section, we considered uniform and unidirectional growth.
When growth varies spatially, kinematic constraints may lead to a change in
growth direction and thus in organ shape. We consider here the important
case of differential growth in a slender, rod-like body, such as a plant shoot
or stem, which leads to the bending of the organ.9,105,144

To address this question, we model the shoot by a thin rod of length L(t)
and constant radius R{L, restricting its shape to a curve in two dimen-
sions for simplicity. The spatio-temporal shape of the rod is then fully
described by the angle y(s,t) made by the rod with the vertical axis, where
s is the arc length from the fixed base and t is time (Figure 1.10a). By
definition, the local curvature of the rod is: C(s,t)¼�@y/@s. Here the con-
vention is such that curvature is positive when the shoot angle decreases
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away from the base, as in Figure 1.10a. The growth kinematics are char-
acterized by the velocity field v(s, t) of the different material points along
the rod. A portion ds of the rod at position s and time t increases to a length
(1þ _e dt)ds at time tþdt, where _e¼ @v/@s is the local growth rate. Similarly,
the Lagrangian change of curvature during dt, i.e. following the material
displacement, is:

dC
dt
¼ @C
@t
þ vðs; tÞ @C

@s
: (1:69)

We now assume that the growth rate not only varies along the rod but also
across the thickness of the rod, from a value _e2 at the bottom side of the
rod to a value _e1o_e2 at the upper side (Figure 1.10a). During dt, the lower
side length thus expands to (1þ _e2dt)ds while the upper side expands to
(1þ _e1dt)ds. As shown in Figure 1.10a, this differential expansion must
induce a small change of rod curvature dC. Geometry imposes that:
[(1þ _e2dt)ds]/(rþR)¼ [(1þ _e1dt)ds]/(r�R), where r¼ (1/dC)cR. At first
order, the curvature change induced by differential growth is then
given by:

R
dC
dt
�

_e2 � _e1

2
: (1:70)

Combining this kinematic growth relation with the expression (1.69) of the
Lagrangian derivative gives:

R
dC
dt
¼R

@C
@t
þ vðs; tÞ @C

@s

� �
¼ _eD;

with D¼
_e2 � _e1

_e1 þ _e2
and _e¼

_e1 þ _e2

2
:

(1:71)

This equation shows that change of curvature in a thin elongated organ is
driven by differential growth, here expressed in terms of the relative growth
asymmetry D¼ (_e2� _e1)/(_e2þ _e1). For a given D, the rate of change of curva-
ture is set by the mean growth rate _e¼ (_e2þ _e1)/2¼ @v(s,t)@s. Note that local
change in curvature impacts the entire organ orientation because the rela-
tionship between angle and curvature is non-local:

yðs; tÞ¼ �
ðs

0
Cðs0; tÞds0 þ y0: (1:72)

where y0 is the angle of the shoot at the base.
Eqn (1.71) shows that maintaining a steady curved shape in a growing

organ (@C/@t ¼ 0) requires a subtle spatio-temporal regulation of differential
growth to satisfy: v(s,t)R(@C/@s)¼ _e(s,t)D(s,t) – an idea first put forward by
Wendy Silk (see ref. 145). Such steady growing shapes are found in many
seedlings145 and also in some compound leaves.129 In these examples, the
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end of the shoot or stem exhibits a hook shape that remains steady and at a
fixed distance from the plant apex, all along the growth. Although the hook
shape appears steady, each tissue element must follow a complex bending
and unbending growth pattern as it moves from the tip, in order to comply
with kinematics (see Figure 1.10b).

Bending induced by differential growth is also the basis of most tropic
movements in plants,58 i.e. the directed motion in response to external
stimuli such as light (phototropism), touch (thigmotropism) or gravity
(gravitropism), which we discuss below. Plants detect gravity using special-
ized cells (called statocytes), in which starch-rich particles (called amylo-
plasts or statoliths) sediment under gravity to form miniature ‘‘granular’’
piles at the bottom of the cell101,103,109,158 (see Figure 1.11 and Box 1.5).
When the cell is inclined, the statoliths move toward the side of the cell even
at a small inclination, unlike sand grains, because statoliths are fluidized by
the cytoskeleton’s activity (see ref. 13 and Box 1.5). The resulting asymmetric
position of statoliths within the cell triggers a complex molecular pathway,
leading to the generation of a growth-hormone gradient across the thickness

Figure 1.10 Differential growth in slender organs. (a) Kinematic description of a
growing rod-like organ and bending induced by differential growth
across the thickness. (b) Steady hook shape in a growing shoot, showing
the growth and spatio-temporal path of a group of cells (orange region)
produced at the apical meristem (red spot) and advected outside the
growth zone. (c) Differential growth on a two-dimensional, leaf-like
organ induces the generation of a positive (left) or a negative (right)
Gauss curvature depending on the growth gradient.
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(the growth hormone in plants is called auxin) and thus to differential
growth and organ curvature.

The gravitropic response of plant shoots is inclination-dependent and
follows a sine-like shape, such that:

Dgravity ¼
_e2 � _e1

_e1 � _e2

� �
gravity

¼ bsiny; (1:73)

where b is a dimensionless parameter characterizing the gravitropic sensi-
tivity of the plant. This sine-law has classically been interpreted as the
consequence of a force-sensing mechanism at the cellular level, the
projection of the weight of the statoliths along the side of the cell being
proportional to sin y. However, recent experiments have shown that the
response is independent of the gravity intensityzz, suggesting that the
gravitropic stimulus is the position of the statoliths within the cell, not their
weight.24,124

Surprisingly, when the expression (1.74) of the gravitropic response is
introduced in eqn (1.71)–(1.72) (without the advective term) to predict the
gravitropic bending of an inclined stem, an unrealistic spatio-temporal dy-
namics is found. Instead of converging toward the vertical, the tip of the
stem keeps oscillating back and forth, with regions of increasing curvature
accumulating close to the base of the stem.8 This paradox was solved by
adding to the gravitropic law (1.74) an additional term proportional to the
local curvature, which counteracts the generation of curvature induced by
gravity sensing:8

Dprop¼
_e2 � _e1

_e1 þ _e2

� �
prop
¼ � gRC; (1:74)

where g is a dimensionless parameter. Such tendency of a stem or a shoot to
perceive its own curvature and straighten was coined ‘‘autotropism’’ in early
studies (see ref. 21 and 48 and older references therein) and latterly ‘‘pro-
prioception’’, by analogy with the sense of body perception in vertebrates.8

In plants, the mechanism of proprioception is still debated104,116 but its
reality is well supported, in particular by experiments in microgravity en-
vironments which show that an initially curved stem spontaneously
straightens during growth. Writing for simplicity sin yEy and neglecting the
advection term in eqn (1.71) gives for the evolution of the curvature:

R
@C
@t
¼ _eðby� gRCÞ: (1:75)

zzThis observation is valid as long as gravity intensity is high enough. In very low gravity en-
vironments (typically go10�2 m s�2), the avalanche time of the statoliths may become longer
than the growth timescale _e�1 so that statoliths have not the time to reach their equilibrium
position before the plant bends. The gravitropic response then decreases and becomes null
without gravity, as expected.
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This mathematical model of gravitropism, which includes both grav-
iperception and proprioception, was first introduced by Bastien et al.8 and
coined the ‘‘AC model’’ (for Angle–Curvature). Unlike the purely gravitropic
model, the AC model exhibits a steady solution (@tC¼ 0) given by
y(s)¼ y0exp(�s/Lc), where y0 is the inclination of the stem at the base and
Lc¼ gR/b is a bending length scale. This steady shape is controlled by the
balance number B:

B¼ L
Lc
¼ Lb

gR
� O

Dgravity

Dprop

� �
; (1:76)

which quantifies the ratio of the gravitropic term to the proprioceptive
term. For Bc1 (Lc{L), graviperception is large compare to proprioception
and the plant rapidly recovers the vertical after a bending length Lc. In the
opposite situation B{1 (LccL), proprioception overcomes graviperception
and the plant does not recover the vertical over its length L. Note that the
balance number B not only controls the final shape of the plant but also its
dynamics toward vertical: for large B, the tip of the stem oscillates
several times around the vertical before converging, which is not the case
for small B.8

The previous discussion shows that the perception of gravity alone
through the sine law (1.74) does not enable a proper posture control in
plants, and that an additional straightening or proprioceptive mechanism is
needed. The AC model constitutes the building block from which additional
effects may be considered. For instance, the gravitropic response exhibits
several timescales not included in the simple sine law, such as a delay time
before the beginning of bending and a memory time that filters rapid
changes in inclination.23 The purely kinematic model presented here can
also be extended to add mechanical effects, such as elasticity and stem
sagging under its own weight.27 In this case, the actual (or observed)
curvature C contains an elastic contribution due to the self-weight. It must
thus be distinguished from the natural88 curvature C0 induced by differ-
ential growth and described by eqn (1.71). Finally, other kinds of tropisms
and plant movements may be included in this framework, such as photo-
tropism, thigmotropism or circumnutation – the spontaneous oscillation
and circular movements of the tip of stems.1,10,106 Extension to three-
dimensional growing rods, including torsion and helicity, are also avail-
able (see ref. 106 and references therein).

1.2.4.5 Growth in Thin Sheets and Morphogenesis

We have seen how differential growth across the thickness of a rod-shaped
organ like a stem induces a change in natural curvature. When the organ

88The natural curvature is also called the intrinsic, or the spontaneous, curvature.
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Box 1.5 Gravity sensing in plants: an active
granular flow problem?

From tiny shoots to large trees, all plants are able to sense gravity
and reorient their growth toward the vertical direction set by
the gravitational field. This ability is important at early stages of
development for roots to anchor in the soil and shoots to find light.
It is also key throughout the plant’s life, for the plant to maintain
its upright position and not fall against its own weight. The detection
of gravity in plants is known to originate in specialized cells
(statocytes) containing dense starch grains (amyloplasts or statoliths);
but how cells detect the statoliths and how this sensing is converted
into a bending growth response at the organ level are still largely open
questions (see, for example, the reviews101,103,105,109,158).

Recent experiments studying the gravitropic response of shoots to
hyper- and hypo-gravity conditions have shown that plants are not
sensitive to the intensity of the gravity field, but only to the inclination
against the direction of the gravity vector.24,124 The gravisensor in
plants is thus a position sensor, not a force sensor. This finding is
surprising because it implies that the pile of statoliths at the bottom of
the cell move and respond to even the tiniest tilt. At first sight, such a
behavior contradicts our knowledge of the physics of granular media,
which stipulates that an assembly of grains cannot move below a crit-
ical avalanche angle set by friction and steric constrains between
particles.3

The solution to this conundrum comes from the in-situ visualization of
statolith movement in response to a large cell tilt13 (Figure 1.11b). Ini-
tially, statoliths flow in bulk like a granular ‘‘avalanche’’, with a pile angle
that rapidly relaxes toward a critical angle yc, as expected for a classical
granular medium. However, over a long time the behavior strongly con-
trasts with that of a classical granular medium. Instead of being stuck at
yc, the statolith pile keeps evolving and slowly creeps until its free surface
recovers the horizontal, as a liquid would do. Investigation of statolith
motion at the particle level reveals that this liquid-like behavior comes
from the agitation of the statoliths, which helps the grains to unjam and
flow even for very small inclinations. This agitation comes from cellular
activity and not thermal agitation, as confirmed by comparison with the
behavior of passive Brownian particles in the same geometry. It is likely to
involve the dynamics of the actin–myosin network in the cytoskeleton,
and its interaction with statoliths.

The remarkable sensitivity of plants to gravity therefore relies on an
active granular material at the cellular level.13 This strategy, which com-
bines local active noise and signal integration of statolith position, shares
similarities with other biological sensors, such as hair cells108 or tactile
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whiskers.28 Understanding the physics of such active particulate media is
an exciting soft matter topic in itself, in addition to the biological
motivations.

Figure 1.11 (a) Signaling pathway of plant gravitropism (adapted from ref. 90). The
plot shows the gravitropic response of wheat coleoptiles to steady
inclination24 (sine law). (b) Flowing behavior of the plant gravisensors
(statoliths). (i) Gravisensing cells of wheat coleoptile. (ii) In-situ visual-
ization of statolith motion in response to a large tilt. The angle of
the free-surface of the statolith pile (ys) first decreases rapidly toward a
critical angle yc, then slowly creeps in order to recover the horizontal,
as a liquid would do (iii, plot in lin-lin and log-lin scale). This
pseudoliquid behavior comes from the agitation of statoliths by cell
activity (blue trajectories in top-left image). Adapted from ref. 13,
https://doi.org/10.1073/pnas.1801895115, under the terms of the CC
BY 4.0 licence, https://creativecommons.org/licenses/by/4.0/.
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remains thin but extends in two directions, such as in a flat leaf, two
different types of differential growth-induced shapes can occur***.

The first mode of deformation is similar to the one we just saw in the case
of a one-dimensional stem and comes from a differential growth across the
thickness of the sheet. In this situation, a natural curvatureyyy C0 in the dir-
ection of differential growth is generated, causing the sheet to curl into a
cylindrical shape. Many plant leaves, for example grass blades or corn leaves,
exhibit such rolled shapes induced by a differential expansion across the leaf
thickness. However, when the leaf is curved in two perpendicular directions
like a shell, bending in one direction is coupled to the other direction
through the generation of in-plane tissue stresses, causing subtle rolling/
unrolling mechanisms.102

The second type of deformation is associated with differential surface
growth: different regions of the sheet grow at different rates (Figure 1.10c).
In general, these spatial variations in growth cannot happen without gen-
erating in-plane compressive stresses. For a thin sheet of lateral size L and
thickness h{L, the energy cost of such compressive deformation is very high
and the system prefers to bulge out of the plane. A non-zero natural Gauss
curvature k0

G is then createdzzz. When the growth is larger in the center of the
sheet than at the edges, the generated Gauss curvature is positive k0

G40, i.e.
the sheet deforms into a dome shape. In contrast, when the edges grow
faster than the center, negative Gauss curvature k0

Go0 is created, resulting in
rippling edges and saddle-like shapes. Many flat organs in plants and algae,
such as leaves, blades or flowers, show this type of rippling at their edges,
induced by faster growth at their periphery.29,83,142,143

Overall, geometry and mechanics, in addition to genetics, play a primary
role in morphogenesis and development – an idea promoted by pioneering
scientists such as d’Arcy Thompson156 and Paul Green.61 This role can be
purely ‘‘passive’’, as when differential growth generates out-of-plane bending
to satisfy geometric compatibility. It can also be ‘‘active’’ and directly influ-
ence the molecular and genetic machinery of the plant, as we have seen in the
case of the cell wall, where the stress in the wall controls the orientation of the
cortical microtubules, which in turn affects wall anisotropy63 (Figure 1.9b).
Understanding such feedback between mechanical signals and biology is one
of the main current challenges in plant morphogenesis.139

***For general textbooks on the elasticity of plates and shells, see for example5,95,157 A mech-
anical description of thin growing sheets in the context of differential geometry can be found
in ref. 44.

yyyThe natural (or intrinsic, or spontaneous) curvature is the curvature that remains when all
external forces, geometrical frustrations or in-plane stresses are released. Experimentally, the
natural curvature along a given direction in a plate or shell is found by cutting a thin strip in
this direction and measuring the resulting curvature.

zzzThe Gauss curvature of a surface is defined by kG¼C1�C2, where C1 and C2 are the two
principal curvatures of the surface (i.e. the two extrema curvatures at the surface point con-
sidered). In practice, the natural Gauss curvature is found by cutting small discs onto the
surface and measuring the two principal curvatures.
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1.2.5 Mechanical Instabilities and Fast Movements

Throughout the chapter we have seen how plants, although lacking muscle,
use gradients of water potential to transport water and perform various
swelling or growth movements. The timescale of these water-driven move-
ments is, however, constrained by a physical limit: for a cell or a tissue to
swell, water must be transported from one place to another within the soft,
porous plant material. We have seen that the shortest response time of this
process is set by the cell relaxation time at the cellular level, and by the
poroelastic time at the tissue level (Section 1.2.3). These timescales depend
on the hydraulic and elastic properties of the medium and, more import-
antly, on the size of the system: the larger the organ, the greater the time
required to produce purely hydraulic motion.

Plants have developed a simple and elegant strategy to overcome this
hydraulic limit: the use of mechanical instabilities.50,52 The general principle
is as follows: during a first ‘‘slow’’ phase, elastic deformation is stored in the
cell wall due to a slow modification of the hydraulic or elastic properties (e.g.
a water movement due to evaporation or active solute transport, a change of
the mechanical properties of the wall, etc). However, this elastic energy is not
released because there exists an ‘‘energy barrier’’ in the system. When the
stored elastic energy reaches a critical point, the energy barrier is crossed
and a second ‘‘fast’’ phase occurs where the deformation in the wall is
rapidly released and converted into a fast movement.

The existence of an energy barrier is the key ingredient for developing a
mechanical instability. This barrier can be of molecular origin, as for bubble
nucleation in a liquid under negative pressure or crack nucleation in a solid
under tension. In this case, the cohesion between molecules is associated with
an energy cost to create a new surface – the bubble or crack – in the medium.
When the size of the bubble (or length of the crack) is large enough, the release
of bulk energy is larger than the cost of surface energy; the bubble (or crack)
then expands suddenly. Fracture propagation and its associated explosive
elastic energy release is used by many plants to disperse their seeds or
spores.37,46,74,76,133 The cavitation of bubbles in a liquid under tension, so
harmful for trees, has been harnessed by some species of ferns to catapult their
spores and thereby generate the fastest movement in the plant kingdom.81,113

The rich physics of cavitation in the context of plants is discussed in Chapter 4.
Mechanisms based on fracture propagation or bubble cavitation are one-

shot, irreversible fast movements: once the stretched tissue is torn or the
metastable liquid transformed into vapor, no resetting of motion is possible.
A more flexible strategy to actuate reversible rapid movements consists of
using an elastic or snap-buckling instability. A snap-buckling instability is the
discontinuous transition between two states of minimal elastic energy in a
slender body. In this case, the energy barrier comes from the existence of a
geometrical constraint: the system cannot transit from one state to the other
without passing through an intermediate shape that generates in-plane
stresses. We have seen that for thin bodies these in-plane stresses are
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associated with an important elastic energy cost. Elastic energy is then ac-
cumulated until it is so large that the barrier is crossed and the shape
suddenly snaps through.

This principle is used by the carnivorous plant Dionaea muscipula (best
known as the Venus flytrap) to trap insects53,123,136 (Figure 1.12a). The trap of
the Venus flytrap consists of two doubly curved, shell-like lobes, which are
convex (curved outward) in the initial state. Because bending such a shell
requires crossing a stretching energy barrier (see below), the trap can store
elastic energy without closing. However, when the inner hairs are triggered,
the plant actively changes the natural curvature of its lobes in one direction.
This is enough to cross the elastic energy barrier, leading to a sudden change
of curvature and closure.

It is possible to quantify this mechanism using a minimal one-
dimensional elastic energy model and scaling arguments.53 Let consider a
shell of typical size L, thickness h and Young’s modulus E. From Hooke’s
law, the total elastic energy of the shell scales as: EelB 1

2 EVe2 , where VBhL2

is the volume of the shell and e is the characteristic elastic strain associated
to the deformation of the shell. When the shell is bent, two different modes
of elastic deformation occur.87 The first one is associated to pure bending,
i.e. the fact that changing the curvature of a plate with respect to its natural
curvature induces a gradient of elastic deformation within the thickness
of the shell. The elastic strain associated to this bending mode is:
ebendBh(C�C0), where C is the actual curvature and C0 is the natural
curvature. The corresponding bending elastic energy is thus:

EbendBEh3L2(C�C0)2. (1.77)

The second mode of deformation is related to geometrical incompatibility: it
is not possible to bend and reverse the curvature of a shell without stretching
or compressing its surface. This is a direct consequence of the Gauss’ The-
orema egregium,5 which implies that a surface cannot change its Gauss
curvature without changing the natural length, or metric, of its surface.
To estimate the stretching deformation estretch induced by such a change of
Gauss curvature, let consider a shallow shell of radius of curvature rcL,
which is deformed into a flat disc (Fig. 1.12b). Assuming that the length L
along the diameter of the shell is conserved, the shell’s perimeter must in-
crease from pL0, where L0 is the initial projected diameter, to pL, so that
estretchB(L� L0)/L0. Pythagoras’s theorem implies that D2þ (L2

0/4)¼ L2/4 and
(r�D)2þ (L2

0/4)¼ r2. Since D{r and D{L, we have at first order:
estretchB2D2/L2BL2/(32r2)pL2k0

G, where k0
G¼ 1/r2 corresponds to the natural

Gauss curvature of the shell. Here the Gauss curvature of the deformed state
is zero since the disc is flat. This relationship can be generalized to a de-
formed state of arbitrary non-zero Gauss curvature as: estretchBL2(k� k0

G),
where kG¼C2 is the Gauss curvature of the deformed state. Therefore, the
elastic energy associated to the stretching mode is given by:

EstretchBEhL6(kG� k0
G)2 ~ EhL6(C2� k0

G)2. (1.78)
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Figure 1.12 Rapid plant movements induced by a snap-buckling instability. (a) The
carnivorous plant Venus flytrap (Dionaea muscipula) in the open (left
image) and closed (right image) states. Bottom panel: three-
dimensional shape reconstruction of the lobe during closure. Left
panel: spatially averaged mean curvature of one lobe as function of
time, showing a sudden transition from convex (C40) to concave (Co0)
(adapted from ref. 53). (b) Sketch of a shallow shell stretched into a flat
disc, in which the shell’s diameter L is conserved but the perimeter
increases. (c) Elastic energy landscape for a thin shell when the bending
energy dominates (a{1), showing a smooth transition from convex to
concave as the natural curvature C0 changes. Ceq is the equilibrium
curvature that minimizes the energy. (d) When the stretching energy
dominates (a41), the energy landscape exhibits two local minima and
the equilibrium shape suddenly snaps from convex to concave.
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The total elastic energy of the shell is the sum of the bending energy (1.77)
and stretching energy (1.78): Eel¼ Ebendþ Estretch. It is convenient to make the
curvatures dimensionless using the characteristic curvature

ffiffiffiffiffiffi
k0

G

p
, such that:

~C¼C=
ffiffiffiffiffiffi
k0

G

p
, ~C0¼C0=

ffiffiffiffiffiffi
k0

G

p
. Using eqn (1.77)–(1.78), the dimensionless total

elastic energy of the shell ~Eel¼ Eel=ðEVðk0
GhÞ2Þ is then:

~EelB ~C � ~C0� �2 þ a ~C2 � 1
� �2

;

with

aB
L4k0

G

h2 ¼O
Estretching

Ebending

� �
: (1:80)

The parameter a quantifies the ratio of the stretching elastic energy to the
bending elastic energy and depends only on the geometry of the shell: the
thinner, wider or curved the shell, the greater the stretching energy com-
pared to the bending energy. We see below that a determines how the shell
flips from convex to concave when the natural curvature C0 is gradually
changed. To this end, we note that, for a given value of ~C0 and a, the equi-
librium shape of the shell ~Ceq is obtained by minimizing the total elastic
energy with respect to ~C:

@~Eel

@~C

 !
~C¼ ~Ceq

¼ 0: (1:81)

Figure 1.12c,d show qualitatively the shape of the total elastic energy as
function of ~C when the natural curvature of the shell ~C0 goes continuously
from convex (~C040) to concave (~C0o0). For a{1, the bending energy
dominates: the elastic energy exhibits only one minimum and the curvature
of the shell at equilibrium is always very close to the natural curvature
CeqEC0. Therefore, when the natural curvature changes from positive to
negative, the shell shape follows the natural curvature and smoothly changes
from convex to concave (Figure 1.12c). The situation is markedly different for
a\1 (Figure 1.12d). In this case, the stretching energy is large and the total
elastic energy (1.79) may exhibit two local minima separated by an energy
barrier, depending on the value of the natural curvature. As shown in
Fig. 1.12d, when the sign of the natural curvature changes, the system
initially remains stuck in the first local minimum of convex shape, until the
energy barrier disappears and the shell suddenly flips to the second min-
imum of energy, corresponding to the concave shape. Therefore, a small
change of natural curvature (the internal motor of the motion) may lead to a
very large change of actual curvature from convex to concave. This is the
amplification mechanism used by the Venus flytrap and other carnivorous
plants to speed up their motion and engulf their preys.53,162

The active process by which plants like the Venus flytrap trigger the in-
stability and overcome the energy barrier is still not fully elucidated, raising
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interesting questions about signaling and fast mechanical actuation at the
molecular level.50,66,154 However, the general principle of using an elastic
instability to overcome the hydraulic limit and amplify the speed of motion
is robust and weakly depends on these microscopic details.146 This strategy
has already inspired several artificial devices, such as fast soft actuators and
jumping robots.73,79,94,168 More generally, the non-muscular movements of
plants offer a wealth of mechanisms worth studying from a physics and
engineering perspective.19,22,140 Biomimetic applications of plant move-
ments are further discussed in Chapter 8.
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121. B. Péret, G. Li, J. Zhao, L. R. Band, U. Voß, O. Postaire, D.-T. Luu,
O. Da Ines, I. Casimiro, M. Lucas, D. M. Wells, L. Lazzerini, P. Nacry,
J. R. King, O. E. Jensen, A. R. SchÃòner, C. Maurel and M. J. Bennett,
Auxin regulates aquaporin function to facilitate lateral root emergence,
Nat. Cell Biol., 2012, 14(10), 991–998.

122. J. Philip, Propagation of turgor and other properties through cell ag-
gregations, Plant Physiol., 1958, 33(4), 271.

123. S. Poppinga and M. Joyeux, Different mechanics of snap-trapping in the
two closely related carnivorous plants dionaea muscipula and al-
drovanda vesiculosa, Phys. Rev. E, 2011, 84(4), 041928.

124. O. Pouliquen, Y. Forterre, A. Bérut, H. Chauvet, F. Bizet, V. Legue and
B. Moulia, A new scenario for gravity detection in plants: the position
sensor hypothesis, Phys. Biol., 2017, 14(3), 035005.

125. M. Probine and R. Preston, Cell growth and the structure and mech-
anical properties of the wall in internodal cells of nitella opaca: Ii.
mechanical properties of the walls, J. Exp. Bot., 1962, 13(1), 111–127.

126. T. E. Proseus, J. K. Ortega and J. S. Boyer, Separating growth from
elastic deformation during cell enlargement, Plant Physiol., 1999,
119(2), 775–784.

127. T. E. Proseus, G.-L. Zhu and J. S. Boyer, Turgor, temperature and the
growth of plant cells: using chara corallina as a model system, J. Exp.
Bot., 2000, 51(350), 1481–1494.

128. P. S. Raux, S. Gravelle and J. Dumais, Design of a unidirectional water
valve in tillandsia, Nat. Commun., 2020, 11(1), 1–7.

129. M. Rivière, Y. Corre, A. Peaucelle, J. Derr and S. Douady, The hook
shape of growing leaves results from an active regulatory process,
J. Exp. Bot., 2020, 71(20), 6408–6417.

130. F. E. Rockwell, N. M. Holbrook and A. D. Stroock, Leaf hydraulics i:
Scaling transport properties from single cells to tissues, J. Theor. Biol.,
2014, 340, 251–266.

62 Chapter 1

D
ow

nl
oa

de
d 

on
 9

/2
0/

20
22

 8
:5

0:
51

 P
M

. 
Pu

bl
is

he
d 

on
 0

9 
Se

pt
em

be
r 

20
22

 o
n 

ht
tp

s:
//p

ub
s.

rs
c.

or
g 

| d
oi

:1
0.

10
39

/9
78

18
39

16
11

62
-0

00
01

View Online

https://doi.org/10.1039/9781839161162-00001


131. F. E. Rockwell, N. M. Holbrook and A. D. Stroock, Leaf hydraulics ii:
vascularized tissues, J. Theor. Biol., 2014, 340, 267–284.

132. E. R. Rojas, S. Hotton and J. Dumais, Chemically mediated mechanical
expansion of the pollen tube cell wall, Biophys. J., 2011, 101(8), 1844–
1853.

133. A. Rolena, M. Paetkau, K. A. Ross, D. V. Godfrey, J. S. Church and
C. R. Friedman, Thermogenesis-triggered seed dispersal in dwarf
mistletoe, Nat. Commun., 2015, 6(1), 1–5.

134. J.-P. Rospars and N. Meyer-Vernet, Force per cross-sectional area from
molecules to muscles: a general property of biological motors, R. Soc.,
Open Sci., 2016, 3(7), 160313.

135. A.-L. Routier-Kierzkowska, A. Weber, P. Kochova, D. Felekis,
B. J. Nelson, C. Kuhlemeier and R. S. Smith, Cellular force microscopy
for in vivo measurements of plant tissue mechanics, Plant Physiol.,
2012, 158(4), 1514–1522.

136. R. Sachse, A. Westermeier, M. Mylo, J. Nadasdi, M. Bischoff, T. Speck
and S. Poppinga, Snapping mechanics of the venus flytrap (dionaea
muscipula), Proc. Natl. Acad. Sci., 2020, 117(27), 16035–16042.

137. L. Sack and N. M. Holbrook, Leaf hydraulics, Annu. Rev. Plant Biol.,
2006, 57, 361–381.

138. A. Sampathkumar, P. Krupinski, R. Wightman, P. Milani, A. Berquand,
A. Boudaoud, O. Hamant, H. Jönsson and E. M. Meyerowitz, Sub-
cellular and supracellular mechanical stress prescribes cytoskeleton
behavior in arabidopsis cotyledon pavement cells, eLife, 2014,
3, e01967.

139. A. Sampathkumar, A. Yan, P. Krupinski and E. M. Meyerowitz, Physical
forces regulate plant development and morphogenesis, Curr. Biol.,
2014, 24(10), R475–R483.

140. S. Schleicher, J. Lienhard, S. Poppinga, T. Speck and J. Knippers, A
methodology for transferring principles of plant movements to elastic
systems in architecture, Comput. -Aided Des., 2015, 60, 105–117.

141. J. Schroeder, R. Hedrich and J. Fernandez, Potassium-selective single
channels in guard cell protoplasts of vicia faba, Nature, 1984,
312(5992), 361–362.

142. J. M. Selker, G. L. Steucek and P. B. Green, Biophysical mechanisms for
morphogenetic progressions at the shoot apex, Dev. Biol., 1992, 153(1),
29–43.

143. E. Sharon, B. Roman, M. Marder, G.-S. Shin and H. L. Swinney, Buck-
ling cascades in free sheets, Nature, 2002, 419(6907), 579.

144. W. K. Silk, Quantitative descriptions of development, Annu. Rev. Plant
Physiol., 1984, 35(1), 479–518.

145. W. K. Silk and R. O. Erickson, Kinematics of hypocotyl curvature, Am. J.
Bot., 1978, 65(3), 310–319.

146. J. M. Skotheim and L. Mahadevan, Physical limits and design
principles for plant and fungal movements, Science, 2005, 308(5726),
1308–1310.

Basic Soft Matter for Plants 63

D
ow

nl
oa

de
d 

on
 9

/2
0/

20
22

 8
:5

0:
51

 P
M

. 
Pu

bl
is

he
d 

on
 0

9 
Se

pt
em

be
r 

20
22

 o
n 

ht
tp

s:
//p

ub
s.

rs
c.

or
g 

| d
oi

:1
0.

10
39

/9
78

18
39

16
11

62
-0

00
01

View Online

https://doi.org/10.1039/9781839161162-00001


147. E. Steudle, Water flow in plants and its coupling to other processes: An
overview, Methods Enzymol., 1989, 174, 183–225.

148. E. Steudle, The biophysics of plant water: compartmentation, coupling
with metabolic processes, and flow of water in plant roots, Water and
life, Springer, 1992, pp. 173–204.

149. E. Steudle. Pressure probe technique: basic prinples and application to
studies of water and solute relations at the cell, tissue and organ
level, Water deficits. Plant responses from cell to community, 1993,
pp. 5–36.

150. E. Steudle and U. Zimmermann, Determination of the hydraulic
conductivity and of reflection coefficients in nitella flexilis by means of
direct cell-turgor pressure measurements, Biochim. Biophys. Acta,
Biomembr., 1974, 332(3), 399–412.

151. E. Steudle, U. Zimmermann and U. Lüttge, Effect of turgor pressure
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